SINUS PENTA MULTIFUNCTION AC DRIVE

USER MANUAL - Installation Guide -

Issued on 01/10/2015 R.07

English

- This manual is integrant and essential to the product. Carefully read the instructions contained herein as they provide important hints for use and maintenance safety.
- This device is to be used only for the purposes it has been designed to. Other uses should be considered improper and dangerous. The manufacturer is not responsible for possible damages caused by improper, erroneous and irrational uses.
- Elettronica Santerno is responsible for the product in its original setting.
- Any changes to the structure or operating cycle of the product must be performed or authorized by Elettronica Santerno.
- Elettronica Santerno assumes no responsibility for the consequences resulting by the use of nonoriginal spare-parts.
- Elettronica Santerno reserves the right to make any technical changes to this manual and to the product without prior notice. If printing errors or similar are detected, the corrections will be included in the new releases of the manual.
- The information contained herein is the property of Elettronica Santerno and cannot be reproduced. Elettronica Santerno enforces its rights on the drawings and catalogues according to the law.

Elettronica Santerno S.p.A.

Via della Concia, 7 – 40023 Castel Guelfo (BO) Italy
Tel. +39 0542 489711 – Fax +39 0542 489722

santerno.com info@santerno.com

SINUS PENTA INSTALLATION GUIDE

NOTE

This manual also applies to the drives of the Penta Marine line.

REVISION INDEX

The following subjects covered in this User Manual (Installation Instructions) R.07 have been added, changed or suppressed in respect to revision R.06.2.

The meaning of the ENABLE_A and ENABLE_B terminals has been explained. The references to the STO (Safe Torque Off) function have been added.

"Device" has been replaced with "product" on the cover page.

"Engingeering Dept." has been removed from the cover page.

Symbols for FIRE HAZARD and HOT SURFACE have been added.

Any reference to Multipump application has been removed (see special-purpose product "Iris Blue").

EMC filters: Category C3 for current values <400A. Category C4 for current values ≥400A have been clarified.

Reference to RST auxiliary power supply has been removed for size S64/74/84.

Clearance between two drives for IP54 models has been added.

Through-panel kit Part Numbers have been added along with reference to separate user manuals for SINUS PENTA S22 and S32.

Figure concerning through-panel assembly for SINUS PENTA S22 and S32 rectified as per fixing templates. 12-phase power supply extended to S41..S52 drives.

Section Cable Cross-section Fitting the Terminal for S20 has been modified.

The tightening torques for bars size S41 and greater have been modified.

Relay controlled via MDO1 and MDO2 schematics have been split into internal power supply and external power supply.

Reference to IFD/VTC/FOC STARTUP has been removed. Reference to the Programming Guide has been added instead.

Application tables for parallel models S41..S52 have been added.

Section covering Operating Temperatures Based On Application Category: some values have been modified and operating temperature has been raised to 55°C without current derating where possible.

Section covering supply unit SU465 has been added.

Markers for BU600 terminals have been rectified.

Any reference to BU700 braking unit has been removed (BU700 not available).

"Apeak" removed from tables concerning DC inductors.

The technical specifications of AC reactors, 5T-6T, IM0127042 to IM0127142 have been added.

All functions that are not MODBUS/TCP have been removed from the Ethernet board.

The names of terminals 5 and 6 (+24VE and 0VE) on the ES870 board have been changed.

Section about ES988 option board has been added.

Section covering ES966 option board has been completed.

SANTERNO USER MANUALS MENTIONED IN THIS GUIDE

The following Santerno User Manuals are mentioned throughout this Installation Guide:

- 15R0102B1 Sinus Penta Programming Guide
- 15N0102B200 SINUS PENTA SINUS PENTA Spare Control Board User Manual
- 15Q0102B00 Sinus Penta Guide to the Regenerative Application
- **15Q0102B200** Sinus Penta Guide to the Synchronous Motor Application
- **15P0101B1** Sinus Penta Assembly Instructions for Modular Inverters
- 15G0010B1 PROFIdrive Communications Board Installation and Programming Instructions
- 15G0851B100 Data Logger ES851 Programming Instructions
- 16B0901B1 Remote Drive DRIVE REMOTE CONTROL User Manual
- 15M0102B10 Sinus Penta Guide for Capacitor Reforming
- 15N0040B100 Sine Filters User Manual
- **15W0102B100** Sinus Penta Assembly Instructions for Through-panel Kit S22
- 15W0102B200 Sinus Penta Assembly Instructions for Through-panel Kit S32
- 15W0102B300 Safe Torque Off Function Application Manual
- 15P0102B200 SINUS PENTA Parallel-connected Models S41..S52
- 15P0102A300 AC/DC Units

TABLE OF CONTENTS

R	SANTERNO USER MANUALS MENTIONED IN THIS GUIDE	
S		
1.	GENERAL DESCRIPTION	16
	1.1. FEATURE LIST	17
	1.2. SPECIAL APPLICATIONS AVAILABLE FOR THE SINUS PENTA	18
2.	SAFETY STATEMENTS	19
	2.1. Installing and Operating the Equipment	
3.	EQUIPMENT DESCRIPTION AND INSTALLATION	23
	3.1. PRODUCTS COVERED IN THIS MANUAL	23
	3.2. DELIVERY CHECK	24
	3.2.1. Nameplate	
	3.2.2. Transport and Handling	
	3.2.3. Unpacking	
	3.3. Installing the Equipment	29
	3.3.1. Environmental Requirements for the Equipment Installation, Storage and Transport	
	3.3.2. Air Cooling	30
	3.3.2.2. STAND-ALONE Models - IP20 and IP00 (505–560P)	
	3.3.2.3. STAND-ALONE Models - 1F34 (303–332)	
	3.3.2.4. Dimensioning the Cooling System	
	3.3.3. Inverter Scheduled Maintenance	
	3.3.4. Air Filters	
	3.3.5. Heat Sink and Ambient Temperature Check	36
	3.3.5.1. Control Board	
	3.3.5.2. Cleaning the Heat Sink	36
	3.3.6. Cooling Fans	
	3.3.6.1. Replacing the Cooling Fans	
	3.3.7. Capacitors	
	3.3.7.1. Capacitor Reforming	36
	3.3.7.2. Replacing a Capacitor	
	3.3.8. Bypass Contactor	
	3.3.8.1. Replacing the Bypass Contactor	
	3.3.9. Size, Weight, Dissipated Power, Noise Level	
	3.3.9.1. IP20 and IP00 STAND-ALONE Models (S05–S60) Class 2T	
	3.3.9.2. IP20 and IP00 STAND ALONE Models (S05–S60P) Class 4T	
	3.3.9.3. IP20 and IP00 STAND-ALONE Models (S12–S52) Class 5T-6T	
	3.3.9.5. IP54 STAND-ALONE Models (S05–S30) Class 2T	
	3.3.9.6. IP54 STAND-ALONE Models (S05–S30) Class 2T	
	3.3.9.7. IP54 STAND-ALONE Models (S03–S30) Class 41	
	3.3.9.8. IP54 BOX Models (S05–S20) Class 2T	
	3.3.9.9. IP54 BOX Models (S05–S20) Class 4T	
	3.3.9.10. IP42 and IP54 Cabinet Models (S15–S90)	
	3.3.10. Standard Mounting and Piercing Templates (IP20 and IP00 Stand-Alone Models S05–S60P)	
	3.3.11. Through-Panel Assembly and Piercing Templates (IP20 and IP00 Stand-Alone Models S05–S52)	
	3.3.11.1. Sinus Penta S05	
	3.3.11.2. Sinus Penta S12	55
	3.3.11.3. Sinus Penta S14	56
	3.3.11.4. Sinus Penta S15–S20–S30	
	3.3.11.5. Sinus Penta S22–S32	
	3.3.11.6. Sinus Penta S41–S42–S51–S52	
	3.3.12. Standard Mounting and Piercing Templates (IP00 Modular Models S64–S90)	
	3.3.12.1. Installation and Lay-out of the Connections of a Modular Inverter (S65)	64

	Standard Mounting and Piercing Templates (IP54 Stand-Alone Models S05–S32)	
	Wiring Diagram for inverters S05–S60P	
3.4.2.	Wiring Diagram for Modular Inverters S64–S90	
	External Connections for Modular Inverters S65 and S70	
	External Connections for Modular Inverters S64	
3.4.2.3.		
3.4.2.4.		
3.4.2.5.		
3.4.2.6.		
3.4.2.7.	Internal Connections for Modular Inverters S74, S75 and S80	83
3.4.2.8.	Internal Connections for Modular Inverters S84 and S90	83
	12-pulse Connection for Modular Inverters	
	Power Terminals for S05–S52	
	Power Terminals Modified for a DC Inductor	
	Connection Bars for S60P Inverters	
	Connection Bars for Modular Inverters S64–S70	
<i>3.4.8.</i>	Connection Bars for Modular Inverters S74–S80	
	Connection Bars for Modular Inverters S84–S90	
3.4.10.	Auxiliary Power Supply Terminals	94
	Cross-sections of the Power Cables and Sizes of the Protective Devices	
3.4.11.1	· · · J · · · · · ·	
3.4.11.2		
3.4.11.3	· · · · · · · · · · · · · · · · · · ·	
3.4.11.4 3.4.11.5	3	
3.4.11.6	• • • • • • • • • • • • • • • • • • • •	
3.4.11.7	<u>.</u>	
	Inverter and Motor Ground Connection	
	ROL TERMINALS	
	Main Features	
	Gaining Access to Control Terminals and Power Terminals	
	IP20 and IP00 Models	
	IP54 Models	
3.5.3.	Control Board Signals and Programming	112
	Display and Indicator LEDs	
	DIP-switches	
	Configuration Jumpers	
	Digital Inputs (Terminals 1421 and Terminal S)	
	START (Terminal 14)	
	ENABLE-A (Terminal 15) and ENABLE-B (Terminal S)	
	RESET (Terminal 16)	
3.5.4.4.		
3.5.4.5.	5 · · · · · · · · · · · · · · · · · · ·	
	Analog Inputs (Terminals 1 to 9)	
3.5.5.1. 3.5.5.2.		125 126
3.5.5.2.		120
3.5.5.3. 3.5.5.4.		
	Digital Outputs (Terminals 24 to 34)	
3.5.6.1.	o , , ,	
3.5.6.2.		
3.5.6.3.		
3.5.6.4.	, , ,	
	Analog Outputs (Terminals 10 to 13)	
3.5.7.1.		
	ATING AND REMOTING THE KEYPAD	
	Indicator LEDs on the Display/Keypad	
3.6.2.	Function Keys	139
3.6.3.	Setting the Operating Mode	140
	Adjusting the Display Contrast	
	Adjusting the Display Contrast, Back-light and Buzzer	
	Remoting the Display/Keypad	
	Using the Display/Keypad for Parameter Transfer	
	AL COMMUNICATIONS	
3.7.1.	General Features	145

		Direct Connection	
		Multidrop Network Connection	
	3.7.3.1.		
	3.7.3.2.		
		How to Use Isolated Serial Board ES822 (Optional)	
		The Software	
		Serial Communications Ratings	
	3.8. Auxii	LIARY POWER SUPPLY	150
4.	START U	P	151
_	TEOLINIO	AL SPECIFICATIONS	450
5.			
		OSING THE PRODUCT	
		LIGHT Applications: Overload up to 120% (60/120s) or up to 144% (3s)	
	5.1.1.1.		
	5.1.1.2. 5.1.1.3.		
		Technical Sheet for 5T and 6T Voltage Classes — Parallel-connected Models	
		STANDARD Applications: Overload up to 140% (60/120s) or up to 168% (3s)	
	5.1.2.1.		
	5.1.2.2.		162
	5.1.2.3.		
	5.1.2.1.		
		HEAVY Applications: Overload up to 175% (60/120s) or up to 210% (3s)	
	5.1.3.1.		
	5.1.3.2.		166
	5.1.3.3.		
	5.1.3.4.		
		STRONG Applications: Overload up to 200% (60/120s) or up to 240% (3s)	
	5.1.4.1.		
	5.1.4.2.	· · · · · · · · · · · · · · · · · · ·	
	5.1.4.3.	-	
	5.1.4.4.	. Technical Sheet for Voltage Classes 5T and 6T – Parallel-connected Models	
		RIER FREQUENCY SETTING	
		IP20 and IP00 Models – Class 2T-4T	
		IP20 and IP00 Models – Class 5T-6T	
		IP54 Models – Class 2T-4T	
	5.2 <i>.4.</i>	IP54 Models – Class 5T-6T	177
	5.3. OPEF	RATING TEMPERATURES BASED ON APPLICATION CATEGORY	178
	5.4. Shor	RT-CIRCUIT CURRENTS	181
6.	ACCESS	ORIES	182
	6.1. SUPP	PLY UNIT FOR SINUS PENTA S41S52 (SU465)	182
		Delivery Check	
		Installing and Operating the SU465	
	6.1.3.	SU465 Nameplate	183
		SU465 Operating Mode	184
	6.1.4.1.	. SU465 Operation as a 12-phase Supply Unit	184
	6.1.4.2.	and the state of t	
	6.1.5.	System Requirements	
	6.1.6.	Technical Specifications	185
	6.1.7.	Installing the SU465	
	6.1.7.1.	and the control of th	
	6.1.7.2.		
	6.1.7.3.		
	6.1.7.4.		
	6.1.7.5.		
	6.1.7.6.		
	6.1.7.7.		
	6.1.8.	Wiring the SU465	
		Cross-sections of the Power Cables and Sizes of the Protective Devices when the SU465 is Installed.	
	6.1.9.1.	r saa rr saas	
	6.1.9.2.	117 11	
		Earth Bonding of the SU465	
		Scheduled Maintenance of the SU465	
	6.1.12.	Inductors to be Applied to the Sinus Penta and the SU465	198

6.1.12.1		
6.1.12.2		
	STIVE BRAKING	
	Braking Resistors	
6.2.1.1.		200
	Applications with DUTY CYCLE 20% - Class 2T	
6.2.1.3.		
6.2.1.4.	11	
6.2.1.5. 6.2.1.6.		
6.2.1.7.		
6.2.1.8.		
	Applications with DUTY CYCLE 50% - Class 5T	
6.2.1.10	··	
6.2.1.11		
6.2.1.12		
	ING UNIT (BU200 2T-4T) FOR S41-S51 AND S60-S60P	
	Delivery Check	
	Nameplate for BU200 2T-4T	
	Operation	
	Configuration Jumpers	
6.3.2.2.	Adjusting Trimmers	215
6.3.2.3.	Indicator LEDs	216
	Ratings	
	Installing the BU200	
6.3.4.1.	Environmental Requirements for the BU200 Installation, Storage and Transport	
6.3.4.2.		
6.3.4.3.		218
6.3.4.4.		219
	Wiring	
	Master – Slave Connection	
6.3.5.	Earth Bonding of the BU200	221
	Scheduled Maintenance of the BU200	
	Braking Resistors for BU200 2T	
	Applications with DUTY CYCLE 10% - Class 2T	
6.3.7.2.	Applications with DUTY CYCLE 20% - Class 2T	223
6.3.7.3.	Applications with DUTY CYCLE 50% - Class 2T	223
6.3.8.	Braking Resistors for BU200 4TApplications with DUTY CYCLE 10% - Class 4T	224
	Applications with DUTY CYCLE 10% - Class 41	
6202	Applications with DUTY CYCLE 50% - Class 4T	225
	ING UNITS FOR S42–S52 (BU600 5T-6T)	
	Delivery Check	
6.4.1.1.		226
	Operating Mode	
	Specifications	
0	Installing the BU600	
6.4.4.1.		
6.4.4.2.	· · · · · · · · · · · · · · · · · · ·	
6.4.4.3.		
6.4.4.4.		
6.4.5.	Earth Bonding of the BU600	
	Scheduled Maintenance of the BU600	
6.4.7.	Braking Resistors to be applied to BU600 5T-6T	235
6.4.7.1.	Applications with DUTY CYCLE 10% - Class 5T	235
6.4.7.2.	Applications with DUTY CYCLE 20% - Class 5T	235
6.4.7.3.	Applications with DUTY CYCLE 50% - Class 5T	236
6.4.7.4.	• • • • • • • • • • • • • • • • • • •	
6.4.7.5.	rr sasa a companya a c	
6.4.7.6.	rr contra to the contract of t	
	ING UNIT BU1440 FOR MODULAR INVERTERS 4T AND 5T-6T	
	Delivery Check	
6.5.1.1.	·	
	Operation	
	Ratings	
6.5.4.	Installing the BU1440	239

		Environmental Requirements for the BU1440 Installation, Storage and Transport	
	6.5.4.2.		
6		. Wiring Diagram	
6.5		Earth Bonding of the BU1440	
6.5		Scheduled Maintenance of the BU1440	2 <i>4</i> 5
6.5	5.7.	Braking Resistors for BU1440 4T	247
		. Applications with DUTY CYCLE 10% - Class 4T	
6	6.5.7.2.	. Applications with DUTY CYCLE 20% - Class 4T	248
6	6.5.7.3	. Applications with DUTY CYCLE 50% - Class 4T	248
6.5	5.8.	Braking Resistors for BU1440 5T-6T	249
6	6.5.8.1.	. Applications with DUTY CYCLE 10% - Class 5T	249
6	6.5.8.2	. Applications with DUTY CYCLE 20% - Class 5T	250
		Applications with DUTY CYCLE 50% - Class 5T	
6	6.5.8.4	Applications with DUTY CYCLE 10% - Class 6T	251
6	6.5.8.5	Applications with DUTY CYCLE 20% - Class 6T	251
	6.5.8.6		252
6.5		Available Braking Resistors	
6	6.5.9.1		
	6.5.9.2		
		IP54 Models from 1100W to 2200W	
		IP20 Models from 4kW-8kW-12kW	
		IP23 Boxes from 4kW to 64kW	
6.6.		PAD REMOTING KITS	
		Remoting the Keypad on the Cabinet	
		Remoting a Keypad Controlling Multiple Inverters	
		Kit Component Parts	
		Operating Conditions	
		Connecting the Keypad	
		The Communications Protocol	
	6.6.2.5.		
		CONNECTIONS	
6.7.		Input Inductors	
-			
_		Output Inductors (DU/DT Filters)	
6.7		Applying the Inductor to the Inverter	
		Class 2T – AC and DC Inductors	
		Class 4T – AC and DC Inductors	
		Class 5T-6T – AC and DC Inductors	
6.7		Inductance Ratings	
		Class 2T-4T – AC 3-Phase Inductors	
		Class 5T-6T – AC 3-Phase Inductors	
		Class 2T-4T – DC Inductors	
		Class 5T-6T – DC Inductors	
		Class 2T, 4T, 5T, 6T – 3-Phase DU/DT Inductors	
6.7	7.5.	Class 2T – 3-Phase AC Inductors in IP54 Cabinet	=00
6.7	-	Class 4T – 3-Phase AC Inductors in IP54 Cabinet	
6.7	7.7.	Class 5T-6T – 3-Phase AC Inductors In IP54 Cabinet	
6.7	7.8.	Output Single-Phase Inductors for Modular Inverters S75, S80, S90	
6	6.7.8.1.		
6.7		Sine Filters	
6.8.	ES83	36/2 ENCODER BOARD (SLOT A)	286
6.8	3.1.	Identification Data	
6.8	3.2.	Environmental Requirements	286
6.8	3.3.	Electrical Specifications	
6.8		Installing ES836/2 Encoder Board on the Inverter (Slot A)	
6.8		Terminals in Encoder Board	
6.8	-	Configuration DIP-switches	
6.8		Jumper Selecting the Type of Encoder Supply	
6.8		Adjusting Trimmer	
6.8		Encoder Wiring and Configuration	
	3.10.	Wiring the Encoder Cable	
6.9.		13 Line Driver Encoder Board (SLot A)	
6.9		Identification Data	
6.9		Environmental Requirements	
6.9		Electrical Specifications	
6.9 6.9		Installing the Line Driver Board on the Inverter (Slot A)	
6.9	1.O.	Terminals in the Line Driver Encoder Board	300

		Configuration DIP-switches	
	6.9.7.	Encoder Supply Selection Jumper	301
	6.9.8.	Adjusting Trimmer	302
6.	10. ES	S822 Isolated Serial Board (Slot B)	303
		Identification Data	
		Environmental Requirements	
		Electrical Features	
		Installing ES822 Board on the Inverter (Slot B)	
	6.10.5.	Jumper for RS232/RS485 Selection	300
		DIP-switch for RS485 Terminator	
o.		OPTION BOARDS FOR FIELDBUS (SLOT B)	
	6.11.1.	Identification Data	308
	6.11.2.	Installing the Fieldbus Board on the Inverter (Slot B)	308
			311
	6.11.3.		312
	6.11.3.2		312
	6.11.3.3		314
	6.11.4.		315
	6.11.5.	DeviceNet® Fieldbus Board	315
	6.11.5.		316
	6.11.5.		
	6.11.5.		
		CANopen® Fieldbus Board	21 <i>9</i>
	6.11.6.	'	
	6.11.6.2		
	6.11.6.3		
		Ethernet Board	
	6.11.7.		
	6.11.7.2		
		Board Configuration	
	6.11.9.	Status LEDs	
	6.11.9.	1.1. LEDs for Fieldbus Interface CPU Diagnostics	329
	6.11.9.2	.2. LEDs for PROFIBUS-DP® Board Diagnostics	330
	6.11.9.3		330
	6.11.9.4		331
	6.11.9.		
	6.11.10.		
		S919 Communications Board (Slot B)	
		Identification Data	
	6.12.2.	Environmental Requirements Common to All Boards	202
		Electrical Features Common to All Boards	
	6.12.4.	Installing ES919 Board on the Inverter (Slot B)	333
		ES919 Board for Metasys [®] N2	
		5.1. Configuration	
	6.12.5.		
	6.12.5.		
	6.12.5.4		
	6.12.5.		
	6.12.6.	ES919 Board for BACnet/Ethernet	336
	6.12.6.		
	6.12.6.2		
	6.12.6.3		
	6.12.6.4		
		ES919 Board for BACnet/RS485	
	6.12.7.		
	6.12.7.		
۵.			
Ο.		S851 DATALOGGER BOARD (SLOT B)	
		Identification Data	
		Installing ES851 Board on the Inverter (Slot B)	
		Connectivity	
	6.13.3.		
	6.13.3.	3.2. Wiring RS485 Serial Link	346
	6.13.3.3	3.3. COM1 Configuration and Wiring	348
	6.13.3.4	.4. COM2 Configuration and Wiring	350
	6.13.3.		
	6.13.3.		

	4.	ES851-RTC REAL TIME CLOCK (SLOT B)	354
(6.14.1.	Identification Data	354
	6.14.2.		
,	6.14.		
_ 4			
6.1		ES847 I/O Expansion Board (SLot C)	
	6.15.1.		357
(6.15.2.	Installing ES847 Board on the Inverter (Slot C)	357
(6.15.3.	ES847 Board Terminals	359
	6.15.4.	Configuration DIP-switches	
	6. 15.5.	Possible Settings for DIP-switches SW1 and SW2	
(6.15.6.	Wiring Diagrams	
	6.15.	The state of the s	
	6.15.	6.2. Connection of "Fast" Current Inputs	365
	6.15.		
	6.15.		
	6.15.		
	6.15.		
	6.15.	and the state of t	
	6.15.	6.8. Connection to Isolated Digital Outputs	369
(6.15.7.	Environmental Requirements	370
	6.15.8.	Electrical Ratings	
	6.15.		
	6.15.		
	6.15.		
	6.15.		374
6.1	16.	ES870 RELAY I/O EXPANSION BOARD (SLOT C)	375
	6.16.1.	· ·	
	6.16.2.		
	6.16.3.		
,			
	6.16.		
6.1	١7.	I/O Expansion Board 120/240Vac ES988 (SLOT C)	379
(6.17.1.	Identification Data	379
(6.17.2.	Installing ES988 option board on the Sinus Penta (SLOT C)	380
	6.17.3.	Digital Input Terminals and Relay Output	
	6.17.4.	ES988 Operating Mode	
	6.17.5.	Main Features	
(6.17.6.	Environmental Conditions	
(6.17.7.	Electrical Specifications	387
6.1	18.	ES914 Power Supply Unit Board	389
	6.18.1.		
	6. 18.2.		
,		Willing L3914 Doard	39 I
O 4		"I a a O Day" Kay Oa aaraa Oyyaay Aya Eyaa aayay Byay Byay Byay Baray aa IDE4 Maarya	
6.1		"Loc-0-Rem" Key Selector Switch And Emergency Push-Button for IP54 Models	396
6.1 6.2		WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON	396 397
	21.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON	396
6.2 6.2	21. <i>6.21.1.</i>	WIRING IP54 Inverters with Optional "LOC-0-REM" Key Selector Switch and Emergency Push-button; ES860 SIN/COS Encoder Board (Slot A)	396 397 398
6.2 6.2	6.21.1.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON (ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399
6.2 6.2	6.21.1. 6.21.2.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON (ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399
6.2	6.21.1. 6.21.2. 6.21.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401
6.2	6.21.1. 6.21.2. 6.21. 6.21.3.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 <i>40</i> 2
6.2	6.21.1. 6.21.2. 6.21. 6.21.3. 6.21.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 <i>40</i> 2 403
6.2	6.21.1. 6.21.2. 6.21. 6.21.3.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 <i>40</i> 2 403
6.2	6.21.1. 6.21.2. 6.21. 6.21.3. 6.21.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 <i>40</i> 2 403
6.2	6.21.1. 6.21.2. 6.21.3. 6.21.3. 6.21.4. 6.21.5.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON'S ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 <i>402</i> 403 <i>404</i>
6.2	6.21.1. 6.21.2. 6.21.3. 6.21.3. 6.21.4. 6.21.5. 6.21.6.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 401 <i>402</i> 403 <i>404</i> <i>405</i>
6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 401 <i>402</i> 403 <i>404</i> 405 407
6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 402 403 404 405 407 408
6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 <i>402</i> 403 <i>405</i> 405 408 408
6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 <i>402</i> 403 <i>405</i> 405 408 408
6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 <i>402</i> 403 <i>405</i> 405 408 408
6.2 6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.2. 6.22.2.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 401 <i>402</i> 403 <i>404</i> 405 407 408 411 412
6.2 6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.3.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 402 403 405 407 408 408 411 412 413
6.26.26.26.26.26.26.26.26.26.26.26.26.26	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.3. 6.22.3.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 402 403 405 407 408 411 412 413 413
6.2	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.3. 6.22.3. 6.22.4. 6.22.5.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 402 403 405 407 408 411 412 413 413
6.26.26.26.26.26.26.26.26.26.26.26.26.26	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.3. 6.22.3. 6.22.4. 6.22.5. 6.22.6.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 402 403 405 407 408 411 412 413 413 415
6.26.26.26.26.26.26.26.26.26.26.26.26.26	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.3. 6.22.4. 6.22.5. 6.22.5. 6.22.7.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 402 403 404 405 407 408 411 413 413 415 416
6.26.26.26.26.26.26.26.26.26.26.26.26.26	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.3. 6.22.4. 6.22.5. 6.22.5. 6.22.7.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 402 403 404 405 407 408 411 413 413 415 416
6.2 6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.3. 6.22.4. 6.22.5. 6.22.5. 6.22.7.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 402 403 404 405 405 407 408 411 413 413 415 416 416
6.2 6.2 6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.3. 6.22.4. 6.22.5. 6.22.5. 6.22.7. 23. 6.23.1.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 399 401 402 403 405 405 407 408 411 413 413 415 416 416 418
6.2 6.2 6.2 6.2 6.2	6.21.1. 6.21.2. 6.21.3. 6.21.4. 6.21.5. 6.21.6. 22. 6.22.1. 6.22.2. 6.22.3. 6.22.4. 6.22.5. 6.22.5. 6.22.7. 23.	WIRING IP54 INVERTERS WITH OPTIONAL "LOC-0-REM" KEY SELECTOR SWITCH AND EMERGENCY PUSH-BUTTON ES860 SIN/COS ENCODER BOARD (SLOT A)	396 397 398 399 401 402 403 405 405 405 407 408 411 413 415 416 416 418 419 420

6.23.2.2. Incremental Encoder and Digital Line Connectors	423
6.23.3. ES950 Configuration and Operating Modes	424
6.23.3.1. BiSS Operating Mode	
6.23.3.2. EnDat Operating Mode	425
6.23.3.3. Configuring and Adjusting the Encoder Supply Voltage	
6.23.4. Connecting the Encoder Cable	
6.23.4.1. Environmental Requirements	
6.23.4.2. Electrical Ratings	
6.24. ENCODER BOARD HIPERFACE ES966 (SLOT C)	
6.24.1. Part Number	433
6.24.2. Installing the ES966 Board on the Inverter (SLOT C)	
6.24.3. HIPERFACE® Encoder Connector	
6.24.4. Incremental Encoder Connectors and Digital Lines	
6.24.5. Operating Mode and Configuration of Hiperface Encoder Board	
6.24.6. HIPERFACE® Operating Mode	439
6.24.7. Configuring and Adjusting the Encoder Supply Voltage	
6.24.8. Temperature Sensor Configuration	
6.24.9. Connecting the Encoder Cable	
6.24.10. Environmental Requirements	
6.24.11. Electrical Specifications	
7. NORMATIVE REFERENCES	446
7.1. ELECTROMAGNETIC COMPATIBILITY DIRECTIVE	446
7.1.1. Radiofrequency Disturbance	
7.1.1.1. The Power Supply Mains	
7.1.1.2. Output Toroid Filters	
7.1.1.3. The Cabinet	
7.1.1.4. Input and Output Filters	
7.2. Low Voltage Directive	
8. INDEX	454
Index of Tables	
IIIdex of Tubics	
Table 1: Terminal block ID and description	
Table 2: Pin layout for D-sub 26 connector	436
Table 3: IDs and description of the terminal boards	437
Table 4: Configuration of incremental encoder power supply	
Table 5: Configuration of Hiperface encoder power supply	
Table 6: DIP-switch configuration for the temperature sensor	
Table 7: Configuration of jumper J7	
rable 7. Comigaration of jumper of	

Index of Figures

Figure 1: All Sinus Penta models	16
Figure 2: Packaging of the Sinus Penta	24
Figure 3: Example of a nameplate affixed on the drive metal enclosure	25
Figure 4: Example of a nameplate	25
Figure 5: Lifting the packing from underneath	27
Figure 6: How to open the packing	
Figure 7: "This side up" pictogram	28
Figure 8: The Sinus Penta is unpacked	28
Figure 9: Sinus Penta packing box with the internal protective elements	28
Figure 10: Clearance to be observed between two inverters	
Figure 11: Clearance to allow when installing the Inverter/Power supply unit modules	
Figure 12: Piercing template for STAND-ALONE models from S05 to S52 included	52
Figure 13: Piercing template for models S60 and S60P	53
Figure 14: Fittings for through-panel assembly for Sinus Penta S05	54
Figure 15: Piercing templates for through-panel assembly for Sinus Penta S05	55
Figure 16: Fittings for through-panel assembly for Sinus Penta S12	55
Figure 17: Piercing template for through-panel assembly for Sinus Penta S12	56
Figure 18: Fittings for through-panel assembly for Sinus Penta S14	56
Figure 19: Piercing template for through-panel assembly for Sinus Penta S14	57
Figure 20: Through-panel assembly and piercing template for Sinus Penta S15, S20 and S30	58
Figure 21: Fittings for through-panel assembly for Sinus Penta S22 and S32	58
Figure 22: Piercing template for through-panel assembly for Sinus Penta S22 and S32	59
Figure 23: Mechanical parts for the through-panel assembly for Sinus Penta S41, S42, S51 and S52	
Figure 24: Piercing templates for the through-panel assembly for Sinus Penta S41, S42, S51 and S52	61
Figure 25: Piercing templates for modular units	
Figure 26: Piercing templates for control unit (stand-alone model)	63
Figure 27: Installation example for Sinus Penta S65 (in cabinet)	64
Figure 28: Piercing template for IP54 inverter	65
Figure 29: Wiring diagram	
Figure 30: External connections for modular inverters S65-S70	
Figure 31: External connections for modular inverters S64	71
Figure 32: Single optical fibre connector	72
Figure 33: Double optical fibre connector	
Figure 34: Internal wiring for Sinus Penta S65-S70	75
Figure 35: ES840 Supply Board	76
Figure 36: ES841 Inverter Module Gate Unit Board	76
Figure 37: ES843 Bus-bar Voltage Acquisition Board	77
Figure 38: Position of the fastening screws in the terminal board cover and the control unit	77
Figure 39: ES842 Control Unit	78
Figure 40: Single optical-fibre connector	79
Figure 41: Double optical-fibre connector	80
Figure 42: Internal wiring for inverters S64	82
Figure 43: Amplitude of current harmonics in 6-pulse configuration	83
Figure 44: Amplitude of current harmonics in 12-pulse configuration	
Figure 45: Layout of 12-pulse connection for inverters S41. S52	84
Figure 46: Layout of a 12-pulse connection for modular inverters	84
Figure 47: Connection bars in S41–S42–S51–S52	88
Figure 48: S60 and S60P Connection bars	90
Figure 49: Connection bars for S64-S70	91
Figure 50: Connection bars for S74-S80	92
Figure 51: Connection bars for S84-S90	93
Figure 52: Control terminals	
Figure 53: Tightening a screened signal cable	109

SINUS PENTA

Figure 54: Gaining access to the control terminals	110
Figure 55: Gaining access to terminal boards in models IP54	111
Figure 56: Control board: signals and programming	
Figure 57: Control board LEDs	113
Figure 58: Gaining access to DIP-switches SW1 and SW2	117
Figure 59: Gaining access to DIP-switch SW3 and connector RS485 (Sinus Penta S05 to S22)	117
Figure 60: Position of DIP-switch SW3 and connector RS485 (Sinus Penta S30 to S60P)	118
Figure 61: PNP command (active to +24V)	
Figure 62: Power section PWM enable circuit	
Figure 63: Connecting an incremental encoder	
Figure 64: Signal sent from a push-pull, +24V output	123
Figure 65: Potentiometer linked to the REF Input	
Figure 66: Wiring of a PLC analog output, axis control board, etc.	
Figure 67: Wiring of unipolar remote potentiometer 0 ÷ REF max	
Figure 68: 4 ÷ 20 mA Sensor wiring	
Figure 69: Standard pattern of the thermistor resistor for the motor thermal protection	
Figure 70: MDO1 output wiring as PNP for relay control with internal power supply	
Figure 71: MDO1 output wiring as PNP for relay control with external power supply	
Figure 72: MDO1 output wiring as NPN for relay control with internal power supply	
Figure 73: MDO1 output wiring as NPN for relay control with external power supply	
Figure 74: Cascade connection: FOUT frequency output → FINA or FINB frequency input	
Figure 75: MDO2 output wiring as PNP for relay control with internal power supply	133
Figure 76: MDO2 output wiring as PNP for relay control with external power supply	133
Figure 77: MDO2 output wiring as NPN for relay control with internal power supply	134
Figure 78: MDO2 output wiring as NPN for relay control with external power supply	134
Figure 79: Display/keypad	
Figure 80: Removing the display/keypad module	
Figure 81: Front/rear view of the display/keypad and its shell.	
Figure 82: Example of multidrop and direct connection	
Figure 83: Pin lay-out of serial link 1 connector	
Figure 84: Recommended wiring diagram for "2-wire" MODBUS connection	147
Figure 85: Nameplate for SU465	183
Figure 86: The SU465 in 12-phase configuration	
Figure 87: The SU465 as a supply unit of a conversion unit	
Figure 88: Dimensions and fixing points for the SU465	104
Figure 89: Overall dimensions when using IP21 kit	
Figure 90: Dimensions and fixing points when using the through-panel kit for the SU465	
Figure 91: NEMA1 kit and kit installation on the SU465	
Figure 92: Overall dimensions when installing the NEMA1 kit	
Figure 93: Power terminals	
Figure 94: Position of the jumpers in the ES840/1 board	
Figure 95: Signal terminal board	195
Figure 96: Example of a 9-pin shielded cable for signal connection	
Figure 97: S41–S52 connections with 12-ph and 18-ph SU465	196
Figure 98: Nameplate for BU200 2T-4T	
Figure 99: Positions of BU200 configuration jumpers	214
Figure 100: Positions of BU200 adjusting trimmers	
Figure 101: Position of the Indicator LEDs	
Figure 102: Dimensions and fixing points of BU200	
Figure 103: Terminals in BU200	
Figure 104: Connecting one BU200 to the inverter	
Figure 105: Master – Slave multiple connection	
Figure 106: Nameplate for BU600 5T-6T	
Figure 107: BRAKE connector supplied with the Sinus Penta	
Figure 108: Cable connecting the Sinus Penta to braking unit BU600	
Figure 109: Diagnostic LEDs	
Figure 110: Dimensions and fixing points of braking unit BU600	
Figure 111: Power terminals	
Figure 112: Signal terminals	
Figure 113: Wiring diagram for S42-S52 with braking unit BU600	<u> 234</u>
12/455	

	114: Nameplate for BU1440 4T	
	115: Dimensions and fixing points of BU1440	
	116: External power connections for modular inverters S65-S70 provided with BU1440	
	117: External power connections for modular inverters S75-S80 provided with BU1440	
	118: ES841 Unit gate board for the braking unit	
	119: Connection points on ES842 for the braking unit optical fibres	
	120: Internal wiring of inverters S65-S70 provided with a braking unit	
	121: Overall dimensions, 350W resistor	
Figure	122: Overall dimensions for 550W braking resistor	. 254
	123: Overall dimensions for braking resistors from 1100W to 2200W	
	124: Overall dimensions for braking resistors 4kW, 8kW, 12kW	
	125: Overall dimensions of IP23 Box resistors	
	126: Position of electrical connections in box resistors	
	127: Wiring diagram of the keypad remoting kit controlling multiple inverters	
	128: Wiring diagram for optional inductors	
	129: Amplitude of harmonic currents (approximate values)	
	130: Output inductor wiring	
	131: Mechanical features of a 3-phase inductor	
_	132: Mechanical features of a DC inductor	
	133: Mechanical features of the 3-phase du/dt inductors	
	134: Mechanical features of a 3-phase inductor for Class 2T-4T in IP54 cabinet	
	135: Mechanical features of a single-phase output inductor	
_	136: Sine filter	
	137: Encoder board (ES836/2)	
	138: Position of slot A for the installation of the encoder board	
	139: Encoder board fastened to its slot	
	140: Positions of DIP-switches and their factory-setting	
	141: LINE DRIVER or PUSH-PULL encoder with complementary outputs	
	142: PUSH-PULL encoder with single-ended outputs	
	143: PNP or NPN encoder with single-ended outputs and external load resistors	
	144: PNP or NPN encoder with single-ended outputs and internal load resistors	
	145: Wiring the encoder cable	
	147: Position of slot A for the installation of the encoder board	
	148: Encoder board fastened to its slot	
	149: Location of the configuration DIP-switches	
	150: Location of the jumpers selecting the encoder supply voltage	
	151: ES822 board	
Figure	151: E3622 board	. 305 305
	153: Jumper setting RS232/RS485	
Figure	154: Configuration of terminator DIP-switch for line RS485	306
Figure	155: Location of the slot B inside the terminal board cover of the Sinus PENTA inverters	300 300
	156: Checking contacts in the slot B	
Figure	157: Fastening the communications board to slot B	310
Figure	158: PROFIBUS-DP® fieldbus communications board	311
	159: Example of a Profibus network (the correct setting of the line terminators is highlighted)	
	160: Example of the rotary-switch position to set Profibus address "19"	
Figure	161: DeviceNet® Fieldbus communications board	315
	162: Outline of the topology of a DeviceNet trunk line	
Figure	163: CANopen® fieldbus communications board	318
Figure	164: Example of the position of the rotary-switches for 125kbits/s and Device Address 29	. 319
	165: Ethernet Fieldbus Communications Board	
	166: Cable of Cat. 5 for Ethernet and standard colour arrangement in the connector	
	167: Setting a computer for a point-to-point connection to the inverter	
Figure	168: Setting the DIP-switches to set the IP address 192.168.0.2.	. 326
	169: Example of the ping command to the IP address of the inverter interface board	
	170: Anybus IP config utility	
	171: Setting ModScan for a Modbus/TCP connection	
	172: Display of the output variables of the inverter through the Modbus/TCP protocol	
Figure	173: Position of indicator LEDs on the board	. 329
J J		

SINUS PENTA

Figure 174: Position of the slot for ES919 board	333
Figure 175: ES919 Board for Metasys [®] N2	
Figure176: RS485 connector for Metasys® N2	
Figure 177: ES919 Board for BACnet/Ethernet	
Figure 178: BACnet LEDs	
Figure 179: BACnet IP Configuration	
Figure 180: ES919 Board for BACnet/RS485	339
Figure 181: RS485 connector for BACnet/RS485	339
Figure 182: BACnet MSTP Configuration	340
Figure 183: ES851 DataLogger Board	
Figure 184: Position of the slot for the installation of ES851 DataLogger board	342
Figure 185: ES851 DataLogger fitted into slot B	343
Figure 186: Recommended wiring diagram for the connection of 2-wire MODBUS devices	346
Figure 187: Cable of Cat. 5 for Ethernet and standard colour arrangement in the connector	351
Figure 188: Location of the Ethernet port	353
Figure 189: Wiring of the Ethernet cable	
Figure 190: Real Time Clock ES851-RTC Board	354
Figure 191: Signal conditioning and additional I/Os board (ES847)	356
Figure 192: Removing the inverter cover; location of slot C	357
Figure 193: Fitting the strips inside ES847 board and fixing the board on slot C	358
Figure 194: Connection of a bipolar voltage source to a differential input	
Figure 195: Connection of 0÷20mA (4÷20mA) sensors to "fast" current inputs	365
Figure 196: Connecting a voltage source to a "slow" analog input	
Figure 197: Connecting thermoresistors PT100 to analog channels XAIN8-11 / T1-4	
Figure 198: PNP input wiring	
Figure 199: Connecting the incremental encoder to fast inputs XMDI7 and XMDI8	
Figure 200: Signal sent from a 24V, Push-pull frequency output	
Figure 201: XMDOx output connection as PNP for relay command with internal power supply	
Figure 202: XMDOx output connection as PNP for relay command with external power supply	
Figure 203: XMDOx output connection as NPN for relay command with internal power supply	
Figure 204: XMDOx output connection as NPN for relay command with external power supply	
Figure 205: Relay I/O expansion board ES870	
Figure 206: Removing the inverter cover; location of slot C	
Figure 207: ES988 option board, DIGITAL I/O 120/240 Vrms	
Figure 208: Location of slot C inside the terminal board cover	
Figure 209: Inserting connector bars into slot C	
Figure 210: Fastening ES988 option board inside the inverter	
Figure 211: Input-output signal terminal blocks	
Figure 212: Block diagram for ES988 interfacing	
Figure 213: Utilization example of digital inputs on ES988 option board	
Figure 214: ES914 Power supply unit board	
Figure 215: Basic wiring diagram for ES914 board	
Figure 216: Block-diagram with 3-zone insulation	
Figure 217: Position of the LEDs and DIP-switches in ES914 board	
Figure 218: Wiring diagram for IP54 inverters	
Figure 219: ES860 Sin/Cos Encoder board	
Figure 220: Location of Slot A inside the terminal board covers in Sinus PENTA inverters	
Figure 221: Fitting the ES860 board inside the inverter	
Figure 222: Pin layout on the high density connector	
Figure 223: DIP-switch SW1 setting in three-channel mode	
Figure 224: DIP-switch SW1 setting for five-channel mode	
Figure 225: Position of the jumper and voltage adjusting trimmer	
Figure 226: Recommended dual shielded connection for encoder cable	
	404
	404 407
Figure 228: Location of slot C inside the terminal board cover of the Sinus Penta inverter	404 407 409
Figure 228: Location of slot C inside the terminal board cover of the Sinus Penta inverter Figure 229: Terminal strips inserted into SLOT C	
Figure 228: Location of slot C inside the terminal board cover of the Sinus Penta inverter Figure 229: Terminal strips inserted into SLOT C	404 407 409 409
Figure 228: Location of slot C inside the terminal board cover of the Sinus Penta inverter Figure 229: Terminal strips inserted into SLOT C	
Figure 228: Location of slot C inside the terminal board cover of the Sinus Penta inverter Figure 229: Terminal strips inserted into SLOT C	

INSTALLATION GUIDE

SINUS PENTA

Figure:	234: Reco	ommended dual shielded connection for resolver cable4	115
		50 encoder BiSS/EnDat board4	
Figure	236: Loca	tion of slot C inside the terminal board cover in Sinus PENTA inverters4	120
Figure	237: Term	ninal strips inserted into SLOT C4	121
Figure	238: Fitting	g the ES950 board inside the inverter4	121
Figure	239: Pin la	ayout on CN7 D-sub 15-pin female connector4	122
Figure	240: Input	t-output signal terminal board4	123
Figure	241: Block	k diagram for ES950 board interface4	124
Figure	242: Jump	pers and trimmer for power supply configuration4	126
Figure	243: Reco	ommended dual shielded connection for encoder cable4	128
Figure	244: ES96	66 Hiperface Encoder Board4	132
Figure	245: Loca	tion of slot C inside the PENTA terminal board cover4	134
Figure	246: Inser	rting terminal strips to slot C4	134
Figure	247: Faste	ening the ES966 inside the Penta drive4	135
Figure	248: Pin la	ayout on HD female D-sub 26 connector4	136
Figure	249: Input	t-output signal terminals4	137
Figure	250: Block	k diagram of ES966 interface board4	138
Figure	251: Loca	tion of the jumpers, trimmers and DIP-switches of ES9664	141
Figure	252: Conn	nection method recommended for the double-shield encoder cable4	143
Figure	253: Cond	ducted emission limits4	147
Figure	254: Distu	urbance sources in a power drive system equipped with an inverter4	149
Figure	255: Exan	nple of correct wiring of an inverter inside a cabinet4	152
Figure	256: Wirin	ng the toroid filter for the inverters of the Sinus Penta series4	153

1. GENERAL DESCRIPTION

Inverters are electronic devices capable of powering an AC electric motor and of imposing speed and torque values. The inverters of the PENTA series manufactured by Elettronica Santerno SpA allow adjusting speed and torque values of three-phase asynchronous and synchronous motors and brushless, permanent-magnet AC motors by way of several control modes. Control modes may be user-defined and allow obtaining the best performance in terms of fine-tuning and energy saving for any industrial application.

The PENTA inverters provided with the standard firmware feature the control modes below:

- **IFD** control mode: voltage / frequency scalar control for asynchronous motors,
- VTC control mode: sensorless vector control for asynchronous motors.
- FOC control mode: vector control with encoder feedback for asynchronous motors,

The following applications are also available by re-programming the firmware (this can be done by the user as well):

- **SYN** control mode: vector control with feedback from encoder for PMSM synchronous motors;
- **RGN** control mode: two-way interface capable of delivering power to the drives and injecting motor braking power into the mains.

See Special Applications Available for the Sinus Penta for more details.

Available Sinus Penta models range from 1.5kW to 3MW.

AVAILABLE Sinus Penta MODELS

Figure 1: All Sinus Penta models

NOTE

Products may have different ratings and/or appearance than the ones shown in the picture above. The proportion of one enclosure to the other is shown as an example and is not binding.

1.1. Feature List

- One product, multiple functions:
 - vector-modulation IFD function for general-purpose applications (V/f pattern);
 - sensorless, vector VTC function for high torque demanding performance (direct torque control);
 - > vector **FOC** function with an encoder for accurate torque requirements and wide speed range;
 - > SYN function for synchronous motors (see Special Applications Available for the Sinus Penta);
 - ➤ **RGN** AFE (Active Front End) function for power exchange with the mains, with unitary power factor and very low harmonic current (see Special Applications Available for the Sinus Penta);
- Wide range of supply voltage values (200 VAC ÷ 690 VAC) both for stand-alone models and cabinet models.
- Standard DC power supply, 280 to 970 VDC.
- Wide power range from 1.5kW a 3MW.
- Wide range of voltage values and power values for the electric motors to be connected to any inverter model. Example: 380-415Vac:

M	ODEL	LIGHT	STANDARD	HEAVY	STRONG
SINUS PENTA	0025 4TBA2	2X2 22kW	18.5kW	15kW	11kW

- Built-in filters for the whole Sinus Penta range in compliance with regulation EN 61800-3, issue 2 concerning emission limits.
- The new hardware configuration is standard supplied with a safety system including redundant circuitry for the inhibition of firing pulses in the power circuit: Safe Torque Off function, in compliance with EN 61800-5-2 (SIL3) and EN ISO 13849 (PL d). For the correct implementation of the STO functionality and the correct integration of the drive into the safety chain of your application, please refer to the application notice in the Safe Torque Off Function Application Manual.

- Compact and light, the new series of Sinus Penta models may be installed in cabinets and offers a better price/performance ratio.
- Detection of the heat sink temperatures and control component temperatures.
- Automatic control of the cooling system. The ventilation system activates only when required. This
 ensures greater energy saving, minor wear of the cooling fans and reduced noise; In case of
 equipment failure, it is possible to adjust the system speed in order not to stop the equipment and to
 limit dissipated power.
- Built-in braking module up to Size S32 included.
- Noiseless operation ensured by high modulation frequency programmable up to 16 kHz.
- Motor thermal protection to be integrated both through thermal relay function and PTC input (in compliance with DIN44081/2).
- Remotable control panel with a 12-key LCD display showing full words for easier managing and programming of the displayed measures. Five languages available.
 - e. ransfer
- Function parameter saving to remotable display/keypad and possibility of data transfer to multiple inverters.
- Four access levels to the operation parameters and preset parameters for the most common applications.
- PC interface for WINDOWS environment with the RemoteDrive software available in six foreign languages.
- RS485 MODBUS RTU Serial communication for serial links to PCs, PLCs and control interfaces.
- Fieldbuses with internal optional interface boards.

SINUS PENTA INSTALLATION GUIDE

1.2. Special Applications Available for the Sinus Penta

Beside basic parameterization, Sinus Penta drives also implement operating modes and optional functional modes named **APPLICATIONS**, which can be obtained through firmware updating and additional external components.

Optional operating modes available for the inverters of the PENTA series are the **regenerative drive control application** and the **synchronous motor control application**.

In the future, additional optional operating modes will be available, which include application software, instruction manual and dedicated interface board (if any). They implement the most common automation applications, thus replacing PLCs or dedicated control board, and they reduce to a minimum the electric equipment required, thus ensuring lower maintenance costs.

NOTE

In order to upload and install your application SW and update the firmware packets of your Sinus Penta, you can use our RemoteDrive software. Refer to the User Manual related to each individual application for detailed instructions.

The **Regenerative (RGN)** application allows PENTA drives to be used as AC/DC converters for the DC supply of multiple inverters. When operating as an AC/DC converter, the PENTA operates as a bidirectional mains interface both to power connected inverters and to regenerate the braking powers of the connected motors. Mains power supply always provides sinusoidal currents and a unitary power factor, thus avoiding using braking resistors, power factor correction capacitor banks and damping systems of the harmonics delivered to the mains.

The **Synchronous Motor application (SYN**) allows PENTA inverters to control permanent magnet synchronous motors (PMSM).

NOTE Option boards are required, which are described later on in this manual.

Any detail concerning functionality is given in the User Manuals related to each individual application.

2. SAFETY STATEMENTS

This section contains safety statements. The non-observance of these safety instructions may cause serious injury or death and equipment failure. Carefully read the instructions below before installing, starting and operating the inverter.

Only competent personnel must carry out the equipment installation.

SYMBOLS:

DANGER

Indicates operating procedures that, if not correctly performed, may cause serious injury or death due to electric shock.

FIRE HAZARD

Indicates fire hazard also leading to explosion.

HOT SURFACE

Indicates the presence of hot surfaces. Burn risks.

CAUTION

Indicates operating procedures that, if not carried out, may cause serious equipment failure.

NOTE

Indicates important hints concerning the equipment operation.

2.1. <u>Installing and Operating the Equipment</u>

NOTE

Always read this instruction manual before starting the equipment.

The ground connection of the motor casing should follow a separate path to avoid possible interferences.

ALWAYS PROVIDE PROPER GROUNDING OF THE MOTOR CASING AND THE INVERTER FRAME.

If a differential relay against electric shocks is intended to be used, this must be a "B-type" differential relay.

The inverter may generate an output frequency up to 1000 Hz; this may cause a motor rotation speed up to 20 (twenty) times the rated motor speed—for 50Hz motors: never use the motor at a higher speed than the max. allowable speed stated on the motor nameplate.

DANGER

ELECTRIC SHOCK HAZARD – Never touch the inverter electrical parts when the inverter is on; always wait at least 20 minutes after switching off the inverter before operating on the inverter.

Never perform any operation on the motor when the inverter is on.

Do not perform electrical connections on the motor or the inverter if the inverter is on. Electric shock hazard exists on output terminals (U,V,W) and resistive braking module terminals (+,-,B) even when the inverter is disabled. Wait at least 20 minutes after switching off the inverter before operating on the electrical connection of the motor or the inverter.

MECHANICAL MOTION – The drive causes mechanical motion. It is the operator's responsibility to ensure that this does not give rise to any dangerous situation. The STO function may be used to prevent mechanical motion under certain operating conditions. It is the user's responsibility to ascertain the safety level and properly adopt this function without exposing the equipment operators to mechanical risks.

FIRE HAZARD

EXPLOSION AND FIRE – Explosion and fire hazard exists if the equipment is installed in presence of flammable fumes. Do not install the inverter in places exposed to explosion and fire hazard, even if the motor is installed there.

Do not connect supply voltages exceeding the equipment rated voltage to avoid damaging the internal circuits.

If the inverter is installed in environments exposed to flammable and/or explosive substances (zones AD according to standards IEC 64-2), please refer to IEC 64-2, EN 60079-10 and related standards.

Do not connect the equipment power supply to the output terminals (U,V,W), to the resistive braking module terminals (+,-,B) and to the control terminals. The equipment power supply must be connected only to input terminals (R,S,T).

Do not short-circuit terminals (+) and (–) and terminals (+) and (B); do not connect any braking resistors with lower ratings than the required ratings.

Do not start or stop the motor using a contactor over the inverter power supply.

If a contactor is installed between the inverter and the motor, make sure that it is switched over only when the inverter is disabled. Do not connect any power factor correction capacitor to the motor.

Operate the inverter only if a proper grounding is provided.

If an alarm trips, a comprehensive review of the Diagnostic section in the Sinus Penta's Programming Guide is recommended; restart the equipment only after removing the cause responsible for the alarm trip.

CAUTION

Do not perform any insulation test between the power terminals or the control terminals.

Make sure that the fastening screws of the control terminal board and the power terminal board are properly tightened.

Prior to install the product, check the tightening of the factory-made link between power terminals 47/D and 47/+ in the models where this link is provided.

Do not connect single-phase motors.

Always use a motor thermal protection (use the inverter motor thermal model or a thermoswitch installed in the motor).

Respect the environmental requirements for the equipment installation.

The bearing surface of the inverter must be capable of withstanding high temperatures (up to 90°C).

The inverter electronic boards contain components which may be affected by electrostatic discharges. Do not touch them unless it is strictly necessary. Always be very careful so as to prevent any damage caused by electrostatic discharges.

ATTENTION

Static Sensitive Devices. Handle Only at Static Safe Work Stations.

ATTENTION

Circuits sensibles à l'électricité statique. Manipulation uniquement autorisée sur un poste de travail protégé.

ACHTUNG

Elektrostatisch gefährdete Bauelemente. Handhabung daher nur an geschützten Arbeitsplätzen erlaubt.

Before programming and starting the drive, make sure that the connected motor and all the controlled devices can be used for the whole speed range allowed by the converter. The drive may be programmed to control the motor at higher or lower rpm in respect to the speed attained by connecting the motor directly to the power supply line.

For the correct implementation of the STO functionality and the correct integration of the drive into the safety chain of your application, please refer fo the application notice in the Safe Torque Off Function - Application Manual.

Motor insulation and bearing protection

Regardless of the output frequency, the inverter output includes impulses of approx. 1.35 times the equivalent grid voltage with a very short rise time. This applies to all inverters based on IGBT technology.

The impulse voltage may be approx. twofold at the motor terminals, based on the reflection and attenuation of the terminals and motor cable. This may cause additional stress to the motor and the motor insulation cable.

The variable speed drives characterized by rapid rise voltage impulses and by high switching frequencies may cause current impulses through the motor bearings, that could gradually wear the housings of the bearings and the rolling parts.

CAUTION

The motor insulation stress may be avoided by adopting optional du/dt filters (see section Output Inductors (DU/DT Filters)). The du/dt filters also reduce the shaft currents.

Sensors integrated into the motor

For the electrical and insulation specifications, please refer to the Control Terminals section and/or to the option boards which those sensors are connected to.

Critical torsional speed

If required, set up the critical torsional speed of the connected motor (see Prohibit Speeds menu in the Sinus Penta's Programming Guide).

Transient torque analysis

If required, limit the transient torque of the connected motor (see Limits menu in the Sinus Penta's Programming Guide).

2.2. Permanent Magnet Motors

This section covers additional safety statements concerning Sinus Penta drives used with permanent magnet motors. The non-observance of the safety instructions below may cause serious injuries or death and equipment failure.

Do not operate on the converter when the permanent magnet motor is rotating. Even if the power supply is cut out and the inverter is stopped, the permanent magnet motor, when rotating, powers the DC-link of the converter, and voltage is applied to the power supply links.

DANGER

Do the following prior to install and service the inverter:

- · Stop the motor.
- Make sure that the motor cannot rotate when operating on the equipment.
- Make sure that no voltage is applied to the power terminals in the converter.

DANGER

Do not exceed the motor rated rpm. Exceeding the motor rpm may cause overvoltage leading to damage or explosion of the converter DC-Link.

The permanent magnet motor control is made possible only by using the application firmware "PS" of the Sinus Penta for permanent magnet synchronous motors.

NOTE

Possible rotation of permanent magnet motors in case of multiple breakdowns of power semiconductors in the converter.

Multiple breakdowns of the power semiconductors may generate output DC voltage. Under such fault conditions, even if the STO (Safe Torque OFF) function is activated, the permanent magnet motor may be subject to self-alignment torque causing motor rotation of maximum 180/p degrees (where p is the number of pole pairs).

3. EQUIPMENT DESCRIPTION AND INSTALLATION

The inverters of the Sinus Penta series are full digital inverters capable of controlling asynchronous and synchronous motors up to 3 MW.

Inverters of the Sinus Penta series are designed and manufactured in Italy by the technicians of Elettronica Santerno; they incorporate the most advanced features offered by the latest electronic technologies.

Sinus Penta inverters fit any application thanks to their advanced features, among which: 32-bit multiprocessor control board; vector modulation; power control with the latest IGBTs; high immunity to radio interference; high overload capability.

Any value of the quantities required for the equipment operation may be easily programmed through the keypad, the alphanumeric display and the parameter menus and submenus.

The inverters of the Sinus Penta series are provided with the following features:

- wide power supply voltage range: 380-500Vac (-15%,+10%) for voltage class 4T;
- four classes of power supply: 2T (200-240Vac), 4T (380-500Vac), 5T (500-600Vac), 6T (575-690Vac);
- built-in EMC filters available for industrial environment;
- built-in EMC filters available for domestic environment (Sizes S05 and S12);
- DC voltage power supply available;
- built-in braking module (up to Size S32; S12 5T excepted);
- RS485 serial interface with communications protocol according to the MODBUS RTU standard;
- degree of protection IP20 (up to Size S32; IP00 for greater sizes);
- possibility of providing IP54 (up to Size S32);
- 3 analog inputs, 0 ± 10 VDC, 0 (4) ÷ 20 mA; one input may be configured as a motor PTC input;
- 8 opto-isolated digital inputs (PNP inputs);
- 3 configurable analog outputs 0 ÷ 10 V, 4 ÷ 20 mA, 0 ÷ 20 mA;
- 1 opto-isolated, "open collector" static digital output;
- 1 opto-isolated, "push-pull", high-speed static digital output at high switching ratio;
- 2 relay digital outputs with change-over contacts;
- fan control (Sizes S15, S20 and modular drives excepted).

A comprehensive set of diagnostic messages allows a quick fine-tuning of the parameters during the equipment starting and a quick resolution of any problem during the equipment operation.

The inverters of the Sinus Penta series have been designed and manufactured in compliance with the requirements of the "Low Voltage Directive", the "Machine Directive", and the "Electromagnetic Compatibility Directive".

3.1. Products Covered in this Manual

This manual covers any inverter of the Sinus Penta, Sinus BOX Penta, Sinus CABINET Penta series.

Any detail concerning optional functionality is given in separate manuals covering Sinus Penta software applications.

3.2. Delivery Check

Make sure that the equipment is not damaged and that it complies with the equipment you ordered by referring to the nameplate located on the inverter front part. The inverter nameplate is described below. If the equipment is damaged, contact the supplier or the insurance company concerned. If the equipment does not comply with the one you ordered, please contact the supplier as soon as possible.

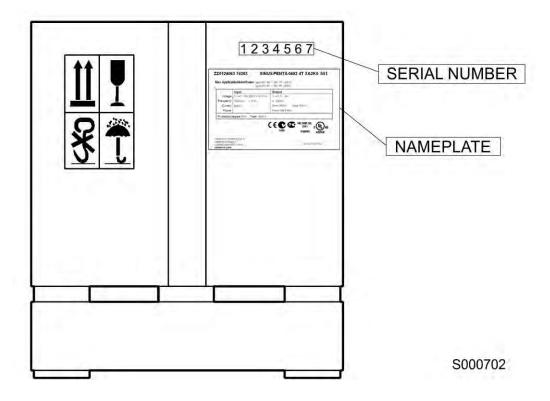


Figure 2: Packaging of the Sinus Penta

If the equipment is stored before being started, make sure that the ambient conditions do not exceed the ratings mentioned in Installing the Equipment section. The equipment guarantee covers any manufacturing defect. The manufacturer has no responsibility for possible damages occurred when shipping or unpacking the inverter. The manufacturer is not responsible for possible damages or faults caused by improper and irrational uses; wrong installation; improper conditions of temperature, humidity, or the use of corrosive substances. The manufacturer is not responsible for possible faults due to the inverter operation at values exceeding the inverter ratings and is not responsible for consequential and accidental damages. The equipment is covered by a 3-year guarantee starting from the date of delivery.

3.2.1. Nameplate

The product is identified by the nameplate affixed on the enclosure side.

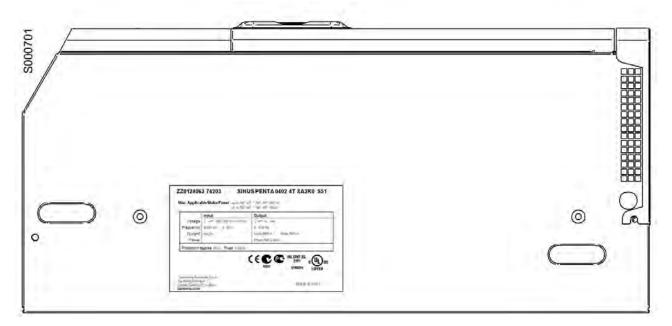


Figure 3: Example of a nameplate affixed on the drive metal enclosure

Example of a nameplate for Voltage Class 4T.

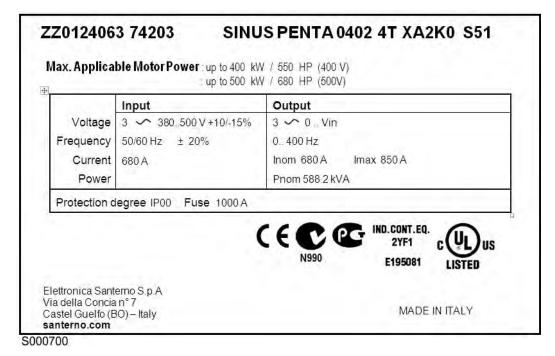


Figure 4: Example of a nameplate

SINUS PENTA

Product Part Number:

SINUS	PENTA	0402	4	Т	Х	A2	K	0
1	2	3	4	5	6	7	8	9

NOTE

Not all the combinations below are possible.

1	Product line:
'	SINUS stand-alone inverter
	SINUS BOX inverter contained inside a box
	SINUS CABINET inverter contained inside a cabinet
2	PENTA control
3	Inverter Model
4	Supply voltage:
	2 = Power supply 200÷240VAC; 280÷340VDC
	4 = Power supply 380÷500VAC; 530÷705VDC
	5 = Power supply 500÷600VAC; 705÷845VDC
	6 = Power supply 575÷690VAC; 845÷970VDC
5	Type of power supply:
	T = three-phase
	C = DC voltage
6	Braking module:
	X = no internal braking chopper
	B = built-in braking chopper
7	Type of EMC filter[*]:
	B = integrated input filter (type A1) plus external, output toroid filter, EN 61800-3 issue 2 FIRST
	ENVIRONMENT Category C1, EN55011 gr.1 cl. B for industrial and domestic users.
	A1 = integrated filter, EN 61800-3 issue 2 FIRST ENVIRONMENT Category C2, EN55011 gr.1 cl.
	A for industrial and domestic users.
	A2 = integrated filter, EN 61800-3 issue 2 SECOND ENVIRONMENT Category C3 for currents
	<400A, category C4 for currents ≥400A, EN55011 gr.2 cl. A for industrial users.
	I = no filter provided;
8	Control panel:
	X = no control panel provided (display/keypad)
	K = control panel and back-lit, 16 x 4 character LCD display provided
9	Degree of protection of stand-alone inverters:
	0 = IP00 (Sizes greater than S32)
	2 = IP20 (up to Size S32)
	5 = IP54 (possible up to Size S32)
	o ii or (possible up to olze osz)

NOTE [*] External EMC filters may be added to bring level I or A2 devices to level B.

CAUTION

EMC filters are designed for earthed networks (TN or TT). Filters for floating networks (IT) can be supplied on demand.

3.2.2. Transport and Handling

The Sinus Penta packing ensures easy and safe handling. Handling shall be done using a transpallet or a lift truck with a carrying capacity of at least 100 kg, in order not to damage the product.

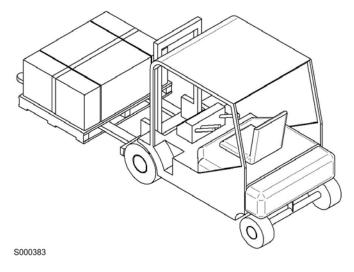


Figure 5: Lifting the packing from underneath

3.2.3. Unpacking

Get near the installation place, then unpack following the instructions provided below.

CAUTION

The whole original packing is to be kept for the full duration of the warranty period.

- 1. Cut with pincers the plastic straps that fix the package of the Sinus Penta to the pallet.
- 2. Cut with a cutter the adhesive tape closing the box on the side where the package orientation symbol is reproduced (see Figure 7).

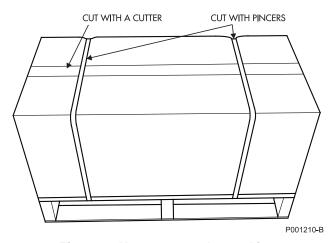


Figure 6: How to open the packing

Figure 7: "This side up" pictogram

3. Remove the Sinus Penta from its packing by lifting it from its sides. To avoid damaging the packing, lift the product keeping it horizontal to the floor (see Figure 8).

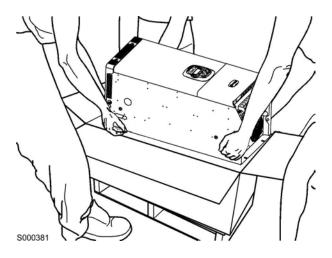


Figure 8: The Sinus Penta is unpacked

4. Put all the packing elements in the box and store it in a dry environment.

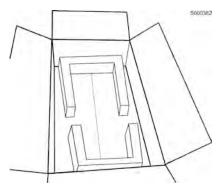
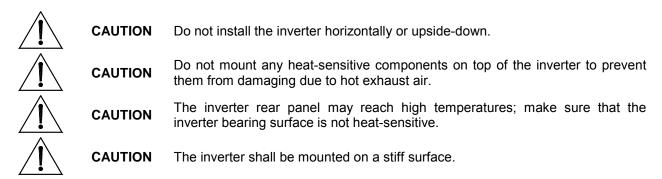


Figure 9: Sinus Penta packing box with the internal protective elements


3.3. Installing the Equipment

The inverters of the Sinus Penta series are Open Type Equipment – degree of protection IP00 and IP20 – that can be installed inside another enclosure featuring degree of protection IP3X as a minimum requirement. Only models featuring degree of protection IP54 may be wall-mounted.

NOTE The inverter must be installed vertically.

The ambient conditions, the instructions for the mechanical assembly and the electrical connections of the inverter are detailed in the sections below.

3.3.1. Environmental Requirements for the Equipment Installation, Storage and Transport

Any electronic board installed in the inverters manufactured by Elettronica Santerno is tropicalized. This enhances electrical insulation between the tracks having different voltage ratings and ensures longer life of the components. It is however recommended that the requirements below be met:

Maximum surrounding air temperature	-10°C to +55°C It might be necessary to apply 2% derating of the rated current for every degree beyond the stated temperatures depending on the inverter model and the application category (see Operating Temperatures Based On Application Category).			
Ambient temperatures for storage and transport	–25°C to + 70°C			
Installation environment	Pollution degree 2 or better (according to EN 61800-5-1). Do not install in direct sunlight and in places exposed to conductive dust, corrosive gases, vibrations, water sprinkling or dripping (except for IP54 models); do not install in salty environments.			
Altitude	Max. altitude for installation 2000 m a.s.l. For installation above 2000 m and up to 4000 m, please contact Elettronica Santerno. Above 1000 m, derate the rated current by 1% every 100 m.			
Operating ambient humidity	From 5% to 95%, from 1g/m³ to 29g/m³, non-condensing and non-freezing (class 3k3 according to EN 50178)			
Storage ambient humidity	From 5% to 95%, from 1g/m ³ to 29g/m ³ , non-condensing and non-freezing (class 1k3 according to EN 50178)			
Ambient humidity during transport	Max. 95%, up to 60g/m ³ ; condensation may appear when the equipment is not running (class 2k3 according to EN 50178)			
Storage and operating atmospheric pressure	From 86 to 106 kPa (classes 3k3 and 1k4 according to EN 50178)			
Atmospheric pressure during transport	From 70 to 106 kPa (class 2k3 according to EN 50178).			

SINUS PENTA

CAUTION

As environmental conditions strongly affect the inverter life, do not install the equipment in places that do not have the above-mentioned ambient conditions.

CAUTION

Always transport the equipment within its original package.

3.3.2. Air Cooling

Make sure to allow adequate clearance around the inverter for the free circulation of air through the equipment. The tables below show the min. clearance to leave in respect to other devices installed near the inverter. The different sizes of the inverter are considered.

3.3.2.1. STAND-ALONE Models - IP20 and IP00 (S05–S60P)

Size	A – Side clearance (mm)	B – Side clearance between two drives (mm)	C – Bottom clearance (mm)	D – Top clearance (mm)
S05	20	40	50	100
S12	30	60	60	120
S14	30	60	80	150
S15	30	60	80	150
S20	50	100	100	200
S22	50	100	100	200
S30	100	200	200	200
S32	100	200	200	250
S41	50	50	200	300
S42	50	50	200	300
S51	50	50	200	300
S52	50	50	200	300
S60	150	300	500	300
S60P	150	150	500	300

3.3.2.2. STAND-ALONE Models - IP54 (S05-S32)

Size	A – Side clearance (mm)	B – Side clearance between two drives (mm)	C – Bottom clearance (mm)	D – Top clearance (mm)
S05	50	100	50	100
S12	60	120	60	120
S14	60	120	80	150
S15	30	60	80	150
S20	50	100	100	200
S22	50	100	100	200
S30	100	200	200	200
S32	100	200	200	250

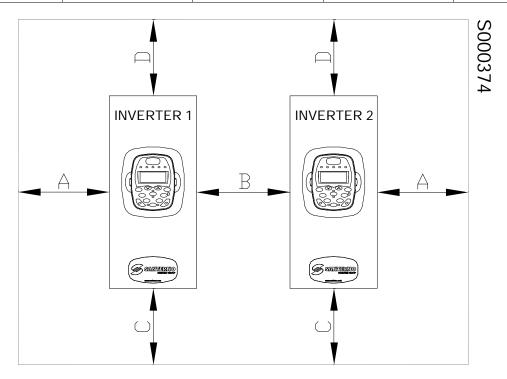


Figure 10: Clearance to be observed between two inverters

3.3.2.3. STAND-ALONE Modular Inverters - IP00 (S64-S90)

Size	Minimum side clearance b/w two inverter modules (mm)	Maximum side clearance b/w two inverter modules (mm)	Maximum side clearance b/w two supply modules (mm)	Maximum side clearance b/w inverter modules and supply modules (mm)	Top clearance (mm)	Bottom clearance (mm)	Clearance b/w two inverter units (mm)
S64-S90	20	50	50	400	100	See Figure 11	300

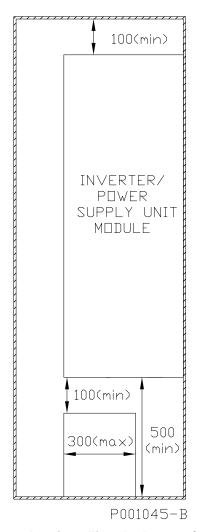


Figure 11: Clearance to allow when installing the Inverter/Power supply unit modules

3.3.2.4. Dimensioning the Cooling System

The air circulation through the enclosure must:

- avoid warm air intake;
- provide adequate air-cooling through the inverter.

The technical data related to dissipated power is shown in the ratings table in section Size, Weight, Dissipated Power, Noise Level.

To calculate the air delivery required for the cabinet cooling consider coefficients for ambient temperature of about 35°C and altitudes lower than or equal to 1000 m a.s.l.

The air delivery required is equal to $Q = (Pti - Pdsu)/\Delta t)*3.5 [m³/h]:$

Pti is the overall thermal power dissipated inside the cabinet and expressed in W,

Pdsu is the thermal power dissipated from the cabinet surface.

Δt is the difference between the air temperature inside the cabinet and the air temperature outside the cabinet (temperatures are expressed in degrees centigrade, °C).

For sheet-steel enclosures, power dissipated from the cabinet walls **(Pdsu)** may be calculated as follows: $Pdsu = 5.5 \times \Delta t \times S$

where **S** is equal to the enclosure overall surface in m².

 ${f Q}$ is the air flow (expressed in m³ per hour) circulating through the ventilation slots and is the main dimensioning factor to be considered in order to choose the most suitable air-cooling systems.

Example:

Enclosure with a totally free external surface housing a **Sinus Penta 0113** and a 500 VA transformer dissipating 15 W.

Total power to be dissipated inside the enclosure (Pti):

D4:			D: Do	246514
component	S			
generated		other	Pa	15W
inverter				
generated	from	the	Pi	2150

Pti Pi + Pa 2165W

Temperatures:

Max. inside temperature desired	Ti	40°C
Max. outside temperature	Te	35°C
Difference between temp. Ti and Te	Δt	5°C

Size of the enclosure (metres):

Width	W	0.6m
Height	Н	1.8m
Depth	D	0.6m

Free external surface of the enclosure S:

```
S = (W \times H) + (W \times H) + (D \times H) + (D \times H) + (D \times W) = 4.68 \text{ m}^2
```

Thermal power dissipated outside the enclosure **Pdsu** (only for sheet-steel enclosures):

Pdsu =
$$5.5 \times \Delta t \times S = 128 \text{ W}$$

Remaining power to be dissipated:

To dissipate Pdiss. left, provide a ventilation system with the following air delivery Q:

$$Q = (Pti - Pdsu) / \Delta t) \times 3.5 = 1426 \text{ m}^3/\text{h}$$

3.3.3. Inverter Scheduled Maintenance

If installed in an adequate place, the inverter scheduled maintenance is reduced to a minimum. The minimum maintenance intervals are indicated in the table below.

Maintenance tasks	Minimum frequency	What to do
Capacitor reforming	Every 12 months if the inverter is stored in a warehouse	See section Capacitor Reforming
Heat sink cleaning check, ambient temperature check	Depending on dust concentration (every 612 months)	See section Heat Sink and Ambient Temperature
Air filter cleaning (IP54 models only)	Depending on dust concentration (every 612 months)	See section Air Filters
Cooling fan check; replacement, if required	Depending on dust concentration (every 612 months)	See section Cooling Fans
Cooling fan replacement	Every 6 years	See section Cooling Fans
Capacitor replacement (if ambient temperature ≥ 35°C, but ranging within allowable rated values)	Every 10 years or 20,000 hours	See section Replacing a Capacitor
Capacitor replacement (if ambient temperature < 35°C)	Every 12 years	See section Replacing a Capacitor
Bypass contactor	Every 10 years	See section Bypass Contactor

Please refer to the Programming Guide (Maintenance menu) for the creation of warnings as reminders of the scheduled maintenance activities.

3.3.4. Air Filters

The air filters are to be periodically cleaned in IP54 models only.

- 1. Remove voltage from the inverter.
- 2. Loosen the side screws on the cover.

3. Pull out the cover in the direction of the arrow.

4. Loosen the fastening screws of the frame.

5. Clean the air filter and replace it, if required.

- 6. Close the inverter by refitting the air filter, then the cover.
- 7. Apply voltage to the inverter.

3.3.5. Heat Sink and Ambient Temperature Check

Dust builds up in the inverter cooling fans, as well as on the heat sink temperature sensors and the ambient temperature sensors. This may alter the readout values.

Periodically check the consistency of the temperature data. If required, clean the control board, (ambient temperature detection) and heat sink (heat sink temperature detection).

3.3.5.1. Control Board

- 1.Remove voltage from the inverter.
- 2.Remove the cover from the inverter.
- 3.Clean the control board with a soft brush.
- 4. Refit the inverter cover.
- 5. Apply voltage to the inverter.

CAUTION

It is forbidden to use compressed air, that contains humidity and impurity. It is recommended that a vacuum cleaner be used along with the soft brush.

3.3.5.2. Cleaning the Heat Sink

Please contact Elettronica Santerno's Customer Service.

3.3.6. Cooling Fans

The minimum expected lifetime of the inverter cooling fans is approx. 50,000 hours. The actual lifetime depends on the operating mode of the inverter, the ambient temperature and the environmental pollution. When the cooling fans are particularly noisy or the heat sink temperature rises, this means that an imminent fault is likely to occur, even if the fans have been regularly cleaned over time. If the inverter is used in a critical stage of a process, replace the fans as soon as those symptoms occur.

3.3.6.1. Replacing the Cooling Fans

Please contact Elettronica Santerno's Customer Service.

3.3.7. Capacitors

The DC-link of the inverter requires several electrolytic capacitors, whose expected lifetime is approx. 40,000 to 50,000 hours. The actual endurance depends on the inverter load and the ambient temperature. The capacitors lifetime may be increased by reducing the ambient temperature.

Capacitor faults cannot be predicted. Normally, when a capacitor fault occurs, the mains fuses blow or an alarm message appears. Please contact Elettronica Santerno's Customer Service if you suppose that a capacitor fault has occurred.

3.3.7.1. Capacitor Reforming

Reform the spare capacitors once a year as detailed in the Guide for Capacitor Reforming.

3.3.7.2. Replacing a Capacitor

Please contact Elettronica Santerno's Customer Service.

3.3.8. Bypass Contactor

Except for models S41/42/51/52 and \geq S64, the pre-charge circuit of the capacitors utilizes a bypass contactor whose expected lifetime is approx. 10 years. The actual duration of the bypass contactor depends on how many times the inverter is powered on and on the dust concentration in the installation environment. Normally, an alarm message is displayed when a bypass contactor fault occurs.

3.3.8.1. Replacing the Bypass Contactor

Please contact Elettronica Santerno's Customer Service.

3.3.9. Size, Weight, Dissipated Power, Noise Level

3.3.9.1. IP20 and IP00 STAND-ALONE Models (S05-S60) Class 2T

	Sinus Penta	w	Н	D	Weight	Power dissipated	Noise level
Size	MODEL	•			Weight	at Inom	Noise level
		mm	mm	mm	kg	W	db(A)
	0007				7	160	, ,
	8000				7	170]
	0010				7	220	
S05	0013	170	340	175	7	220	46
	0015				7	230	
	0016				7	290	
	0020				7	320	
	0023				11	390	
S12	0033	215	401	225 331	12	500	57
	0037				12	560	
S15	0040	225	466		22.5	820	48
313	0049	223	400	331	22.5	950	40
	0060	279		332	33.2	950	
S20	0067		610		33.2	1250	58
320	0074		010	332	36	1350	36
	0086				36	1500	
	0113				51	2150	61
S30	0129	302	748	421	51	2300	01
330	0150	302	740	421	51	2450	66
	0162				51	2700	00
	0180				117	2550	
S41	0202	500	882	409	117	3200	64
341	0217	300	002	403	121	3450	04
	0260				121	3950	
	0313				141	4400	
S51	0367	578	882	409	141	4900	65
	0402				141	6300	
S60	0457	890	1310	530	260	7400	61
	0524	000	1010	550	260	8400	01



NOTE Degree of protection IP20 up to Size S30; IP00 for greater Sizes.

3.3.9.2. IP20 and IP00 STAND-ALONE Models (S05–S60P) Class 4T

Size	Sinus Penta MODEL	w	Н	D	Weight	Power Dissipated at Inom	Noise level
		mm	mm	mm	kg	W	db(A)
	0005				7	215	
	0007			175	7	240	
S05	0009	170	340		7	315	46
	0011				7	315	
	0014				7	315	
	0016				10.5	430	
	0017				10.5	490	
	0020				10.5	490	42
S12	0025	215	401	225	11.5	520	
	0030				11.5	520	
	0034				12.5	680	53
	0036				12.5	710	33
S15	0040	225	466	331	22.5	820	48
313	0049	223	400	331	22.5	950	40
-	0060	279			33.2	950	
S20	0067		610	332	33.2	1250	57
020	0074	213	010	002	36	1350	31
	0086				36	1500	
	0113				51	2150	61
S30	0129	302	748	421	51	2300	01
330	0150	302	740	721	51	2450	66
	0162				51	2700	0
	0180				117	2550	
S41	0202	500	882	409	117	3200	63
341	0217	500	002	409	121	3450	03
	0260				121	3950	
	0313				141	4400	
S51	0367	578	882	409	141	4900	65
	0402				141	6300	
S60	0457	890	1210	520	260	7400	61
300	0524	090	1310	530	260	8400	61
S60P	0598P	890	1310	530	255	6950	83

NOTE Degree of protection IP20 up to Size S30; IP00 for greater Sizes.

3.3.9.3. IP20 and IP00 STAND-ALONE Models (S12–S52) Class 5T-6T

Size	Sinus Penta MODEL	w	Н	D	Weight	Power dissipated at Inom	Noise Level
		mm	mm	mm	kg	W	db(A)
	0003				10	160	
	0004				10	180	
S12 5T	0006	215	401	225	10.5	205	50
	0012				10.5	230	
	0018				10.5	270	
	0003				17.5	170	
	0004				17.5	190	
	0006				17.5	210	
	0012				17.5	240	
S14	0018	270	527	240	17.5	280	49
314	0019	2/0	527	240	17.5	320	49
	0021				17.5	370	
	0022				18	470	
	0024				18	550	
_	0032				18.5	670	
_	0042		833	353	51	750	
S22	0051	202			51	950	68
322	0062	283			54	1000	68
	0069				54	1200	
	0076				80	1400	
S32	0088	267	000	400	80	1700	63
532	0131	367	880	400	84	2100	63
	0164				84	2500	
	0181				128	3450	
642	0201	F00	060	400	128	3900	62
S42	0218	500	968	409	136	4550	63
	0259	7			136	4950	
852	0290				160	5950	
	0314		000	400	160	6400	60
S52	0368	578	968	409	160	7000	69
	0401	1			160	7650	

NOTE Degree of protection IP20 up to Size S32; IP00 for greater Sizes.

3.3.9.4. Modular IP00 STAND-ALONE Models (S64-S90)

To obtain high-power inverters, the following individual modules are matched together:

- Control unit, containing the control board and ES842 board
- Power supply unit module, composed of a 3-phase power rectifier and its control and power supply circuits
- Inverter module, composed of an inverter phase and its control circuits
- Braking unit.

Four types of inverter modules are available:

- basic version
- version with integrated control unit
- version with integrated auxiliary supply unit (to be used for those models which are not equipped with the power supply module sizes S64, S74, and S84);
- version with integrated splitter unit (to be used for the Penta sizes where parallel-connected inverter modules are installed sizes S74, S75, S80, S84 and S90).

Match the modules above to obtain the proper inverter dimensioning for your application:

		Number of power supply modules						
		0	1	2	3			
N. malaar of	3	S 64	S 65	S70	-			
Number of IGBT	6	S74	-	S75	S80			
modules	9	S84	-	_	S90			

CAUTION

The busbars connecting the different modules are not supplied by Elettronica Santerno.

CAUTION

Properly configure ES842 control board inside the control unit. When ordering the inverter, always state the inverter configuration you want to obtain.

a) control unit

The control unit can be installed separately from the inverter modules or inside an inverter module (this option must be stated when ordering the inverter). Dimensions of the control unit (separate from the inverter).

EQUIPMENT	W	Н	D	Weight	Dissipated power
EQUIPMENT	mm	mm	mm	kg	W
Control unit	222	410	189	6	100

NOTE

In the standard configuration, the control unit is installed on an inverter module.

b) Inverter modules and power supply unit

Configuration: power supply delivered from the mains

Models where no parallel-connected inverter modules are installed (S65 and S70)

Size	Sinus Penta	Voltage	Modu	ıles	Overall Dimensions	Overall Weight	Overall Power dissipated at Inom	Noise Level
	Model	class	Power Supply Modules	Inverter Modules	WxHxD	kg	kW	db(A)
	0598	4T	1	3			9.75	
	0748	4T	1	3		440	10.75	
	0831	4T	1	3			12.90	71
S65	0457	5T-6T	1	3	980x1400x560		9.15	
	0524	5T-6T	1	3			9.80	
	0598	5T-6T	1	3			11.25	
	0748	5T-6T	1	3			12.45	
S70	0831	5T-6T	2	3	1230x1400x560	550	14.90	72

Models including parallel-connected inverter modules (S75, S80 and S90)

	Sinus		Mod	lules	Overall	Overall	Overall Power dissipated at	Noise	
Size	Penta Model	Voltage Class	Power	Inverter	Dimensions	Weight	Inom	Level	
			Supply Modules	Modules (*)	WxHxD	kg	kW	db(A)	
	0964	4T	2	6		880	17.20		
	1130	4T	2	6			18.90	73	
S75	1296	4T	2	6	1980x1400x560		21.10		
	0964	5T-6T	2	6			18.40		
	1130	5T-6T	2	6			22.80		
S80	1296	5T-6T	3	6	2230x1400x560	990	24.90	74	
	1800	4T	3	9			29.25		
S90	2076	4T	3	9	2980x1400x560	1220	32.25	75	
390	1800	5T-6T	3	9	2900X1400X360	1320	33.75	75	
	2076	5T-6T	3	9			37.35		

^{(*):} Three inverter modules are to be provided with an integrated splitter unit.

SINUS PENTA

c) Inverter modules, power supply unit and braking unit

Configuration: power supply delivered from the mains; integrated braking unit Models where no parallel-connected inverter modules are installed (S65 and S70)

		.	Modules			Overall	Overall	Power Dissipated	Noise
Size	Sinus Penta Model	Voltage class	Power Supply	Inverter	Braking	Dimensions	Weight	with 50% Braking Duty Cycle	Level
			Modules	Modules	Modules	WxHxD	kg	kW	db(A)
	0598	4T	1	3	1			10.55	71
	0748	4T	1	3	1			11.65	
CCE	0831	4T	1	3	1	1000 1100 500	550	13.90	
S65	0457	5T-6T	1	3	1	1230x1400x560		10.05	
	0524	5T-6T	1	3	1			10.80	
	0598	5T-6T	1	3	1			12.45	
	0748	5T-6T	1	3	1			13.75	
S70	0831	5T-6T	2	3	1	1480x1400x560	660	14.90	72

Models including parallel-connected inverter modules (S75, S80 and S90)

			Modules			Overall	Overall	Power Dissipated		
Size	Sinus Penta Model	Voltage class	Power Supply	Inverter Modules	Braking Modules (**)	Dimensions	Weight	with 50% Braking Duty Cycle	Noise Level	
			Modules	(*)		WxHxD	kg	kW	db(A)	
	0964	4T	2	6	1	2230x1400x560	990	18.50		
	1130	4T	2	6	1	2230314003300	990	20.40		
S75	1296	4T	2	6	2	2480x1400x560	1100	22.90	74	
	0964	5T-6T	2	6	1	2230x1400x560	990	20.30		
	1130	5T-6T	2	6	2	2480x1400x560	1100	25.00		
S80	1296	5T-6T	3	6	2	2730x1400x560	1210	27.30	75	
	1800	4T	3	9	2			31.25		
S90	2076	4T	3	9	2	3480x1400x560	1540	34.85	76	
390	1800	5T-6T	3	9	2	3400x1400x300	1540	36.75	70	
	2076	5T-6T	3	9	2			41.15		

^{(*):} Three inverter modules are to be provided with an integrated splitter unit.

^{(**):} When using two braking modules, one braking module is to be provided with an integrated splitter unit.

d) Inverter modules only

Configuration:

- inverter powered directly from a DC voltage power supply source;
- inverter used as a regenerative power supply unit (for more details, please refer to the technical documentation relating to the Regenerative Penta Drive)

Models where no parallel-connected inverter modules are installed (S64)

			Modules	Overall	Overall	Overall Power dissipated at Inom	Noise Level
Size	Sinus Penta Model	Voltage Class	Inverter	Dimensions	Weight		
			modules	WxHxD	kg	kW	db(A)
	0598	4C	3			7.50	
	0748	4C	3			8.25	
	0831	4C	3			9.90	
S64	0457	5C-6C	3	700~4400~500	220	7.20	1 00
364	0524	5C-6C	3	730x1400x560	338	7.80	69
	0598	5C-6C	3			8.85	
	0748	5C-6C	3			9.75	
	0831	5C-6C	3			11.70	

Models including parallel-connected inverter modules (S74 and S84)

			Modules	Overall	Overall	Overall Power	Noise
Size	Sinus Penta	Voltage Class	lavortor	Dimensions	Weight	dissipated at Inom	Level
	Model	Oldos	Inverter modules (*)	WxHxD	kg	kW	db(A)
	0964	4C	6			13.20	
	1130	4C	6			14.40	
S74	1296	4C	6	1480x1400	676	15.60	70
3/4	0964	5C-6C	6	x560		14.40	72
	1130	5C-6C	6			18.00	1
	1296	5C-6C	6			19.20	
	1800	4C	9			22.50	
S84	2076	4C	9	0000-4400-500	1014	24.75	74
304	1800	5C-6C	9	2230x1400x560	1014	26.55] /4
	2076	5C-6C	9			29.25	

^{(*):} Three inverter modules are to be provided with an integrated splitter unit.

e) Inverter modules and braking module only

Configuration: inverter powered directly from a DC voltage power supply source with a braking unit.

Models where no parallel-connected inverter modules are installed (S64)

	Sinus	V. K.	Modules		Overall Dimensions	Overall Weight	Overall Power Dissipated with 50%	Noise Level
Size	Penta Model	Voltage Class	Inverter	Braking			Braking Duty Cycle	
			Modules	Module	WxHxD	kg	kW	db(A)
	0598	4C	3	1			8.30	
	0748	4C	3	1			9.15	
	0831	4C	3	1			10.90	
S64	0457	5C-6C	3	1	000/1400/560	440	8.10	7
304	0524	5C-6C	3	1	980x1400x560	448	8.80	71
	0598	5C-6C	3	1			10.05	
	0748	5C-6C	3	1			11.05	
	0831	5C-6C					13.20	

Models including parallel-connected inverter modules (S74 and S84)

	Sinus	Vallana	Mod	lules	Overall Dimensions	Overall	Overall Power Dissipated with 50%	Noise Level
Size	Penta Model	Voltage Class	Inverter Modules	Braking Modules	Dimensions	Weight	Braking Duty Cycle	Levei
			(*)	(**)	WxHxD	kg	kW	db(A)
	0964	4C	6	1	1730x1400x560	786	14.50	
	1130	4C	6	1	1700X1100X000	700	15.90	
S74	1296	4C	6	2	1980x1400x560	896	17.40	74
3/4	0964	5C-6C	6	1	1730x1400x560	786	16.30	74
	1130	5C-6C	6	2	1980x1400x560	896	20.20	
	1296	5C-6C	6	2	1960314003300	090	21.60	
	1800	4C	9	2			24.50	
S84	2076	4C	9	2	2730x1400x560	1234	27.35	75
304	1800	5C-6C	9	2	2/30X1400X360	1234	29.55	75
	2076	5C-6C	9	2]		33.05	

^{(*):} Three inverter modules are to be provided with an integrated splitter unit.

^{(*):} When using two braking modules, one braking module is to be provided with an integrated splitter unit.

3.3.9.5. IP54 STAND-ALONE Models (S05-S30) Class 2T

Size	Sinus Penta Model	w	Н	D	Weight	Power Dissipated at Inom.	Noise Level
Size S05 S12 S15		mm	mm	mm	kg	W	db(A)
-	0007					160	
-	8000				-	170	
-	0010	214	577	227	15.7	220	46
-	0013	· ·	077		10.7	220	10
	0015				_	230	
	0016					290	
	0020		Unav		ailable mo	odel as IP54	
	0023				_	390	
S12	0033	250	622	268	23.8	500	65
	0037					560	
915	0040	288	715	366	40	820	47
313	0049	200	713	300	70	950	<u> </u>
	0060				54.2	1050	
S20	0067	339	842	366	J7.2	1250	59
320	0074	339	042	300	57	1350	39
	0086				31	1500	
	0113					2150	61
S30	0129	359	1008	460	76	2300	01
330	0150	358	1008	460	76	2450	66
	0162					2700	

OPTIONAL FEATURES:

Front key-operated selector switch for LOCAL/REMOTE control and EMERGENCY pushbutton.

NOTE

When housing optional features, depth increases by 40mm.

3.3.9.6. IP54 STAND-ALONE Models (S05-S30) Class 4T

Size	Sinus Penta Model	w	Н	D	Weight	Power Dissipated at Inom.	Noise Level
		mm	mm	mm	kg	W	db(A)
	0005					215	
	0007					240	
S05	0009	214	577	227	15.7	315	46
	0011					315	
	0014					315	
	0016					430	
	0017		622	268	22.3	490	
	0020					490	
S12	0025	250			23.3	520	57
	0030				23.3	520	
	0034				24.3	680	
	0036				24.3	710	
Q15	0040	288	715	366	40	820	47
313	0049	200	713	300	40	950	77
	0060				54.2	1050	
520	0067	339	842	366	54.2	1250	59
320	0074	333	072	300	57	1350	33
	0086				37	1500	
	0113					2150	61
630	0129	359	1008	406	76	2300	<u> </u>
330	0150	339	1000	406	76	2450	66
S12 S15 S20	0162					2700	

OPTIONAL FEATURES:

Front key-operated selector switch for LOCAL/REMOTE control and EMERGENCY pushbutton.

NOTE

When housing optional features, depth increases by 40mm.

3.3.9.7. IP54 STAND-ALONE Models (S12-S32) Class 5T-6T

Size	Sinus Penta Model	w	Н	D	Weight	Power dissipated at Inom	Noise Level
		mm	mm	mm	kg	W	db(A)
	0003			268	22.5	160	
	0004				22.5	180	
S12 5T	0006	250	622			205	50
	0012				23	230	
	0018					270	
	0003					170	
	0004				30	190	
	0006			290		210	
	0012	305	751			240	49
S14	0018					280	
314	0019					320	
	0021					370	
	0022				30.5	480	52
	0024				30.5	560	52
	0032			Unava	ailable mod	lel as IP54	
	0042				80	750	
S22	0051	349	1095	393	00	950	68
322	0062	349	1095	393	83	1000	00
	0069				03	1200	
	0076				110	1400	
S32	8800	121	1160	471	118	1700	63
332	0131	431	1100	471	122	2100	03
	0164				122	2500	

OPTIONAL FEATURES:

Front key-operated selector switch for LOCAL/REMOTE control and EMERGENCY pushbutton.

NOTE

When housing optional features, depth increases by 40mm.

3.3.9.8. IP54 BOX Models (S05-S20) Class 2T

Size	Sinus Penta Mod	del	W	Н	D	Weight	Power dissipated at Inom.
			mm	mm	mm	kg	W
	Sinus Penta BOX	0007		600		27.9	160
	Sinus Penta BOX	8000				27.9	170
	Sinus Penta BOX	0010	400			27.9	220
S05B	Sinus Penta BOX	0013			250	27.9	220
	Sinus Penta BOX	0015				27.9	230
	Sinus Penta BOX	0016				27.9	290
	Sinus Penta BOX	0020				27.9	320
	Sinus Penta BOX				48.5	390	
S12B	Sinus Penta BOX	500	700	300	49.5	500	
	Sinus Penta BOX	0037				49.5	560
S15B	Sinus Penta BOX	0040	600	1000	400	78.2	820
3136	Sinus Penta BOX	0049	600	1000	400	78.2	950
	Sinus Penta BOX	0060				109.5	1050
S20B	Sinus Penta BOX	0067	600	1200	400	109.5	1250
3206	Sinus Penta BOX	0074	000	1200	400	112.3	1350
	Sinus Penta BOX	0086				112.3	1500

OPTIONAL FEATURES:

Disconnecting switch with line fast fuses.

Line magnetic circuit breaker with release coil.

Line contactor in AC1.

Front key-operated selector switch for

LOCAL/REMOTE control and EMERGENCY push-button.

Line input impedance.

Motor-side output impedance.

Output toroid filter.

Motor forced-cooling circuit.

Anticondensation heater.

Additional terminal board for input/output wires.

NOTE

Dimensions and weights may vary depending on optional components required.

3.3.9.9. IP54 BOX Models (S05-S20) Class 4T

Size	Sinus Penta Mod	el	W	Н	D	Weight	Power dissipated at Inom.
			mm	mm	mm	kg	Inom. W 215 240 315 315 315 315 430 490 5520 566 680 710 820
	Sinus Penta BOX	0005				27.9	215
	Sinus Penta BOX	0007				27.9	240
Size S05B S12B S15B S20B	Sinus Penta BOX	400	600	250	27.9	315	
	Sinus Penta BOX	0011				27.9	315
	Sinus Penta BOX	0014				27.9	315
	Sinus Penta BOX	0016				48.5	430
	Sinus Penta BOX	0017				48.5	490
	Sinus Penta BOX	0020				48.5	490
S12B	Sinus Penta BOX	0025	500	700	300	49.5	520
S12B S15B	Sinus Penta BOX	0030				49.5	520
	Sinus Penta BOX	0034				50.5	680
	Sinus Penta BOX	0036				50.5	710
Q15B	Sinus Penta BOX	0040	600	1000	400	78.2	820
3136	Sinus Penta BOX	0049	000	1000	400	78.2	950
	Sinus Penta BOX	0060				109.5	1050
S05B S12B S15B	Sinus Penta BOX	0067	600	1200	400	109.5	1250
	Sinus Penta BOX	0074	000	1200	400	112.3	1350
	Sinus Penta BOX	0086				112.3	1500

OPTIONAL FEATURES:

Disconnecting switch with line fast fuses.

Line magnetic circuit breaker with release coil.

Line contactor in AC1.

Front key-operated selector switch for

LOCAL/REMOTE control and EMERGENCY push-button.

Line input impedance.

Motor-side output impedance.

Output toroid filter.

Motor forced-cooling circuit.

Anticondensation heater.

Additional terminal board for input/output wires.

NOTE

Dimensions and weights may vary depending on optional components required.

3.3.9.10. IP42 and IP54 Cabinet Models (S15–S90)

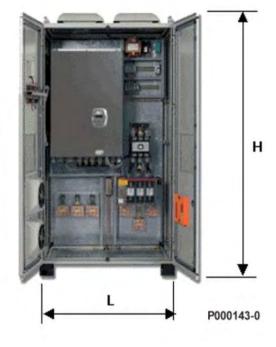
Size	Sinus CABINET Penta Model	Voltage Class	W	Н	D	Weight	Power dissipated at Inom
			mm	mm	mm	kg	W
S15C	0040					120	820
3130	0049					130	950
	0060	2T-4T				140	1050
S20C	0067					170	1250
3200	0074				500	1/13	1350
	0086				300	173	1500
	0042					158	750
S22C	0051	5T-6T				130	950
0220	0062	31-01	600			161	1000
	0069		000			101	1200
	0113						2150
S30C	0129	2T-4T				162	2300
	0150	21 71				102	2450
	0162						2700
	0076					191	1400
S32C	8800	5T-6T					1700
5525	0131	0.0.		2000		195	2100
	0164			4			2500
	0180						2550
S41C	0202	2T-4T				280	3200
	0217						3450
	0260		1000		600		3950
	0181						3450
S42C	0201	5T-6T				300	3900
	0218						4550
	0259			4			4950
0540	0313	OT 4T				050	4400
S51C	0367	2T-4T				350	4900
	0402		4000				6300
	0290		1200				5950
S52C	0314	5T-6T				370	6400
	0368						7000
	0401						7650

(continued)

(continued)

Size	Sinus CABINET Penta Model	Voltage Class	w	н	D	Weight	Power dissipated at Inom
			mm	mm	mm	kg	W
S60C	0457	2T-4T	1600			586	7400
3000	0524	5T-6T	1000			500	8400
	0598						9750
	0748	4T					10750
	0831						12900
S65C	0457		2200			854	9150
	0524						9800
	0598	5T-6T					11250
	0748						12450
S70C	0831		2600	2350	800	1007	14900
	0964			2000	000		17200
	1130	4T					18900
S75C	1296		3600			1468	21100
	0964						18400
	1130	5T-6T					22800
S80C	1296		4000			1700	24900
	1800	4T					29250
S90C	2076	71	4600			2300	32250
0300	1800	5T-6T	7000			2300	33750
	2076	31-01					37350

NOTE


Dimensions and weights are approximate and related to the minimum layout. They may vary depending on optional components required.

The dissipated power does not include the optional components required.

The models related to Size S64C, S74C e S84C are not indicated.

AVAILABLE OPTIONAL COMPONENTS:

- Disconnecting switch with line fast fuses.
- Line magnetic circuit breaker with release coil.
- AC1/AC3 Line contactor.
- Front key-operated selector switch for LOCAL/REMOTE control and EMERGENCY pushbutton.
- Supply line input impedance.
- DC impedance.
- Additional terminal board for input/output wires.
- Output toroid filter. Motor forced-cooling circuit.
- Braking unit for size ≥ S41.
- Anticondensation heater.
- PT100 instruments for motor temperature control.
- Network analyzer
- Optional features/components by request.

NOTE

The value "H" includes the fans and the cabinet base.

3.3.10. Standard Mounting and Piercing Templates (IP20 and IP00 Stand-Alone Models S05–S60P)

Sinus Penta Size	Piercing Templates (mm) (Standard Mounting)										
Size	Х	X1	Υ	D1	D2	Fastening screws					
S05	156	-	321	4.5	-	M4					
S12	192	-	377	6	12.5	M5					
S14	247	-	506	6	13	M5					
S15	185	-	449	7	15	M6					
S20	175	-	593	7	15	M6					
S22	175	-	800	7	15	M6					
S30	213	-	725	9	20	M8					
S32	213	-	847	9	20	M8					
S41	380	190	845	12	24	M8-M10					
S42	380	190	931	12	24	M8-M10					
S51	440	220	845	12	24	M8-M10					
S52	440	220	931	12	24	M10					
S60	570	285	1238	13	28	M10-M12					
S60P	570	285	1238	13	28	M10-M12					

NOTE Degree of protection IP20 up to Size S32; IP00 for greater Sizes.

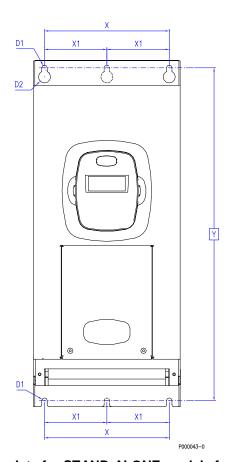


Figure 12: Piercing template for STAND-ALONE models from S05 to S52 included

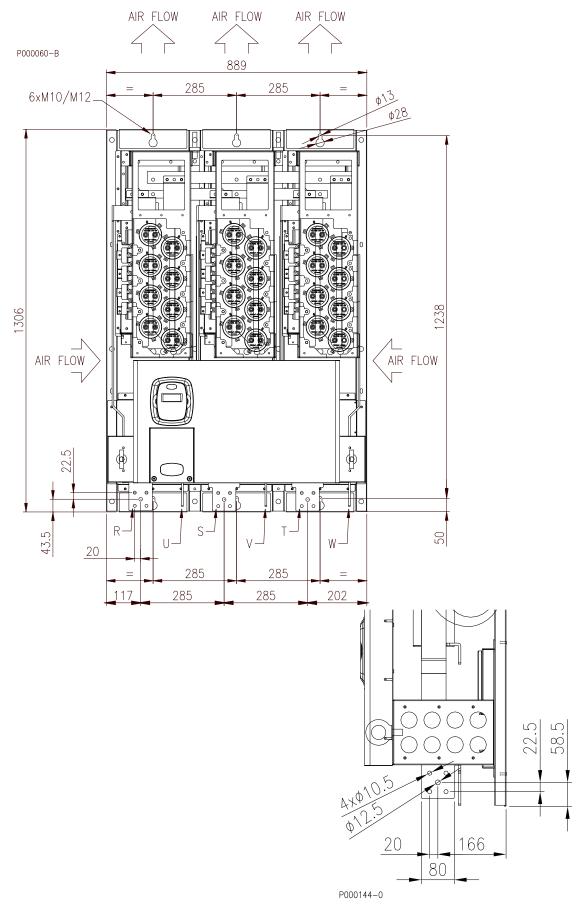


Figure 13: Piercing template for models S60 and S60P

3.3.11. Through-Panel Assembly and Piercing Templates (IP20 and IP00 Stand-Alone Models S05–S52)

The through-panel assembly allows segregating the air flow cooling the power section in order to avoid dissipating power related to inverter loss inside the inverter case. The inverters available for through-panel assembly are from size S05 to S52, both IP20 and IP00, also by way of an additional kit if required.

Drive Size	P/N of additional kit
S05	ZZ0095210
S12	ZZ0121920
S14	ZZ0124930
S15	Not required
S20	Not required
S22	ZZ0124931
S30	Not required
S32	ZZ0124932
S41	ZZ0123901
S42	ZZ0123902
S51	ZZ0123903
S52	ZZ0123904

3.3.11.1. Sinus Penta S05

For this inverter size, no actual through-panel assembly is used, but the air flow of the power section is segregated from the air flow of the control section by installing two optional mechanical parts to be assembled with five (5) M4 self-forming screws.

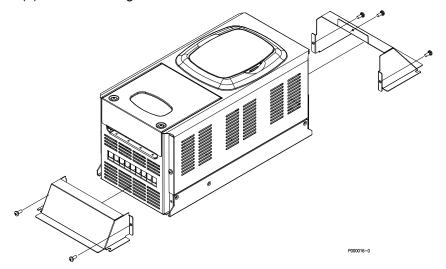


Figure 14: Fittings for through-panel assembly for Sinus Penta S05

The equipment height becomes 488 mm with the two additional components (see figure on the left below). The same figure below also shows the piercing template of the mounting panel, including four M4 holes for the inverter mounting and two slots (142 x 76 mm and 142 x 46 mm) for the air-cooling of the power section.

INSTALLATION GUIDE SINUS PENTA

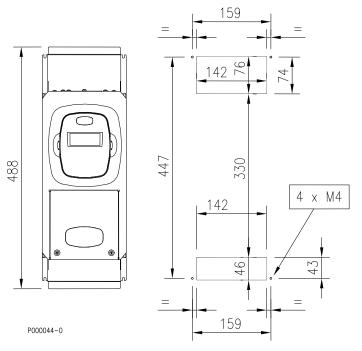


Figure 15: Piercing templates for through-panel assembly for Sinus Penta S05

3.3.11.2. Sinus Penta S12

For this inverter size, no actual through-panel assembly is used, but the air flow of the power section is segregated from the air flow of the control section by installing two optional mechanical parts to be assembled with five (5) M4 self-forming screws (see figure below).

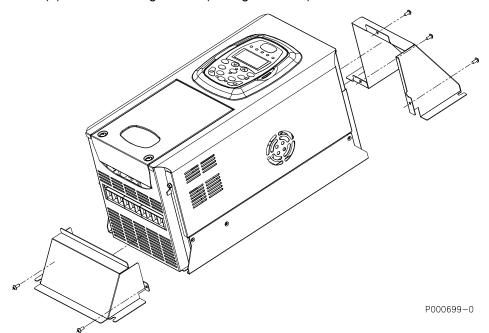


Figure 16: Fittings for through-panel assembly for Sinus Penta S12

The equipment height becomes 583 mm with the two additional components (see figure on the left below). The same figure below also shows the piercing template of the mounting panel, including four M4 holes for the inverter mounting and two slots ($175 \times 77 \text{ mm}$ and $175 \times 61 \text{ mm}$) for the air-cooling of the power section.

INSTALLATION GUIDE

Figure 17: Piercing template for through-panel assembly for Sinus Penta S12

3.3.11.3. Sinus Penta S14

For this inverter size, no actual through-panel assembly is used, but the air flow of the power section is segregated from the air flow of the control section by installing two optional mechanical parts to be assembled with four (4) M4 self-forming screws (see figure below).

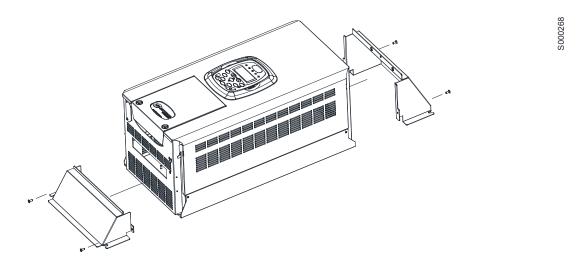


Figure 18: Fittings for through-panel assembly for Sinus Penta S14

The equipment height becomes 690 mm with the two additional components (see figure on the left below). The same figure below also shows the piercing template of the mounting panel, including four M4 holes for the inverter mounting and two slots (232 x 81 mm both) for the air-cooling of the power section.

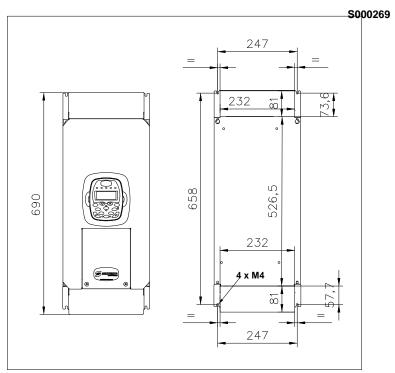
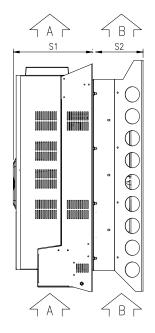


Figure 19: Piercing template for through-panel assembly for Sinus Penta S14


3.3.11.4. Sinus Penta S15-S20-S30

NOTE

Sizes S15-S20-S30 are ready for through-panel assembly with no need to use any additional mechanical components.

No additional mechanical component is required for the through-panel assembly of these three Sinus Penta sizes. The piercing template shown in the figure below is to be made on the mounting panel. Measures are shown in the table. The figure below also shows the side view of the through-panel assembly of the equipment. The air flows and the front and rear projections are highlighted as well (see measures in the table).

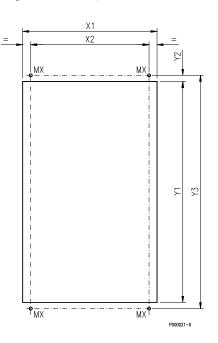


Figure 20: Through-panel assembly and piercing template for Sinus Penta S15, S20 and S30

Inverter size	Front and rear projection		throug	ize for h-panel mbly	Templa	ates for fas holes	Thread and fastening screws	
	S1 S2		X1	Y1	X2	Y2	Y3	MX
S15	256	75	207 420		185	18	449	4 x M6
S20	256	76	207	558	250	15	593	4 x M6
S30	257	164	270	665	266	35	715	4 x M8

3.3.11.5. Sinus Penta S22-S32

For these inverter sizes, no actual through-panel assembly is used, but the air flow of the power section is segregated from the air flow of the control section by installing two optional mechanical parts to be assembled as shown below. The screws are included in the mounting kit.

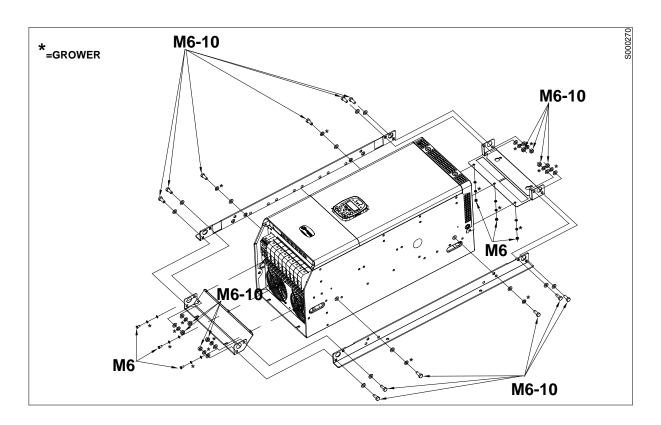


Figure 21: Fittings for through-panel assembly for Sinus Penta S22 and S32

The figure below shows the piercing templates of the mounting panel, including the inverter fixing holes and the hole for the power section air cooling flow.

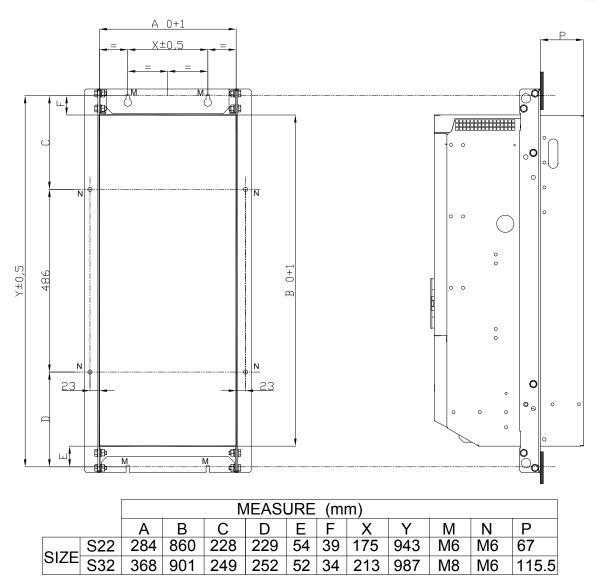


Figure 22: Piercing template for through-panel assembly for Sinus Penta S22 and S32

NOTE

For more details please refer to Assembly Instructions for Through-panel Kit S22 and Assembly Instructions for Through-panel Kit S32.

3.3.11.6. Sinus Penta S41–S42–S51–S52

For this inverter size, no actual through-panel assembly is used, but the air flow of the power section is segregated from the air flow of the control section. This application requires mounting some additional mechanical parts as shown below (the screws are included in the mounting kit).

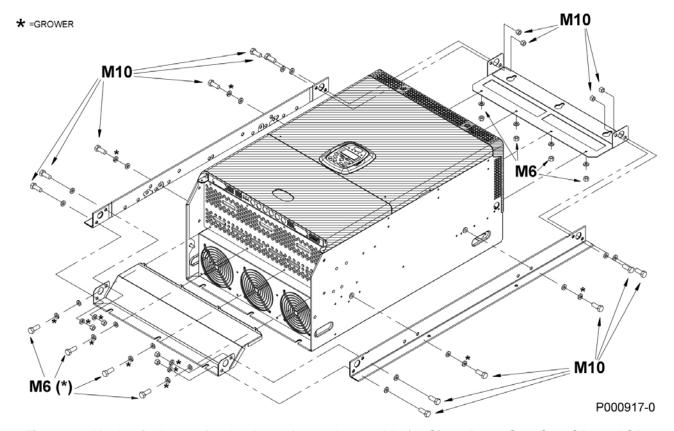


Figure 23: Mechanical parts for the through-panel assembly for Sinus Penta S41, S42, S51 and S52

The figure below shows the piercing templates for the through-panel assembly of the inverter, including six M8 holes and the hole for the air-cooling of the power section.

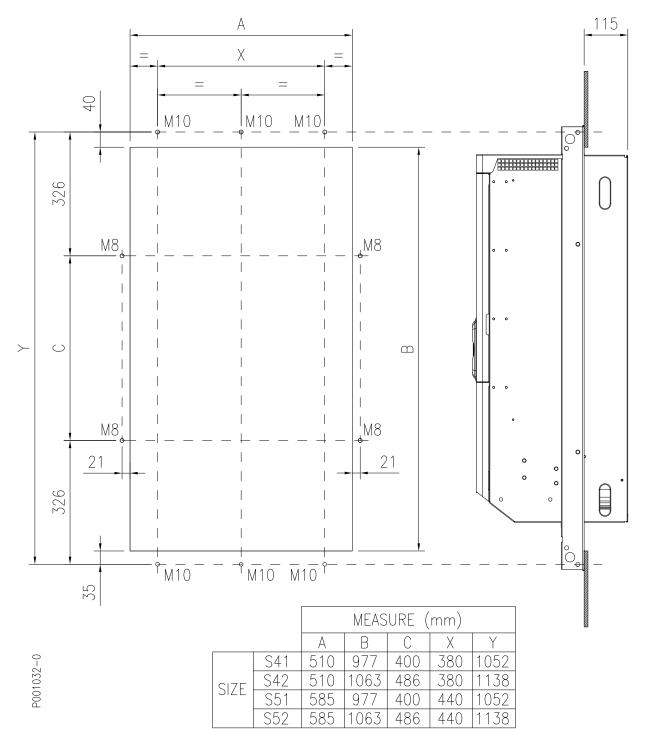


Figure 24: Piercing templates for the through-panel assembly for Sinus Penta S41, S42, S51 and S52

3.3.12. Standard Mounting and Piercing Templates (IP00 Modular Models S64-S90)

High-power inverters include single function modules. The control unit may be installed separately or inside a module. Mounting options are shown below:

a) Control unit integrated into the inverter

	F	Piercing				Modules Fitted							
MODULE	(Single Module)					Inverter Size							
MODULE	X	Υ	D1	D2	Fastening screws	S64	S65	S70	S74	S75	S80	S84	S90
POWER SUPPLY UNIT	178	1350	11	25	M10	-	1	2	-	2	3	-	3
INVERTER	178	1350	11	25	M10	1	2	2	-	2	2	2	5
INVERTER WITH INTEGRATED CONTROL UNIT	178	1350	11	25	M10	1	1	1	1	1	1	1	1
INVERTER WITH INTEGRATED AUXILIARY POWER SUPPLY UNIT	178	1350	11	25	M10	1	-	-	2	1	-	3	-
INVERTER WITH INTEGRATED SPLITTER UNIT	178	1350	11	25	M10	ı	-	-	3	3	3	3	3

b) Control unit separate from the inverter module

	Fixing Templates (mm) (Single Module)				Modules Fitted								
MODULE					Inverter Size								
WIODOLL	X	Υ	D1	D2	Fastening screws	S64	S65	S70	S74	S75	S80	S84	S90
POWER SUPPLY UNIT	178	1350	11	25	M10	-	1	2	-	2	3	-	3
INVERTER	178	1350	11	25	M10	2	3	3	1	3	3	3	6
INVERTER WITH INTEGRATED CONTROL UNIT	178	1350	11	25	M10	1	-	-	2	-	-	3	-
INVERTER WITH INTEGRATED AUXILIARY POWER SUPPLY UNIT	178	1350	11	25	M10	1	-	-	3	3	3	3	3
INVERTER WITH INTEGRATED SPLITTER UNIT	184	396	6	14	M5	1	1	1	1	1	1	1	1

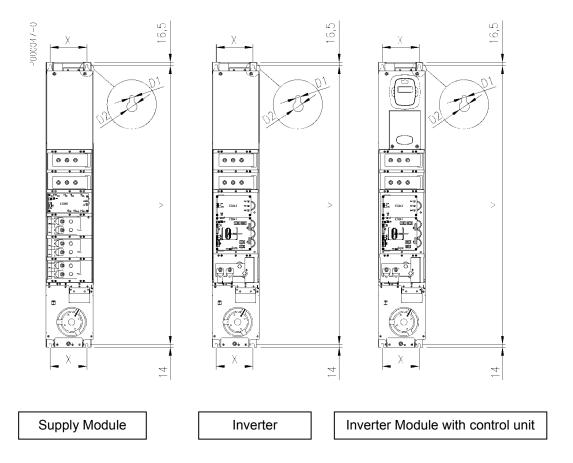


Figure 25: Piercing templates for modular units

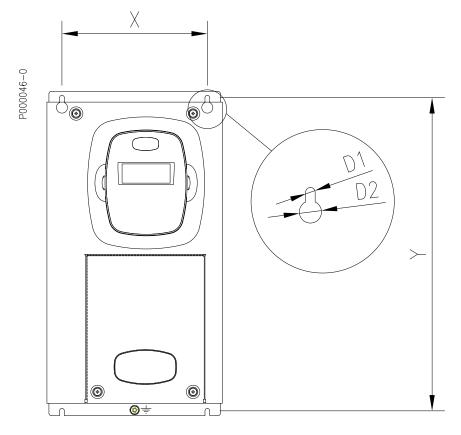



Figure 26: Piercing templates for control unit (stand-alone model)

3.3.12.1. Installation and Lay-out of the Connections of a Modular Inverter (S65)

P000011-B

Figure 27: Installation example for Sinus Penta S65 (in cabinet)

3.3.13. Standard Mounting and Piercing Templates (IP54 Stand-Alone Models S05-S32)

Sinus Penta IP54		Fixing templates (mm) (standard mounting)								
Size	X	Υ	D1	D2	Fastening screws					
S05	177	558	7	15	M6					
S12	213	602.5	7	15	M6					
S14	260	732	7	15	M6					
S15	223	695	10	20	M8					
S20	274	821	10	20	M8					
S22	250	1050	10	20	M8					
S30	296	987	10	20	M8					
S32	300	1130	9	20	M8					

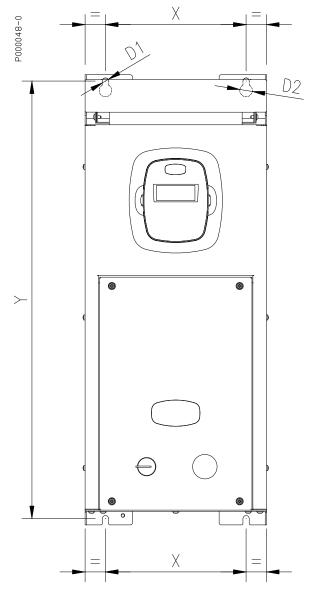


Figure 28: Piercing template for IP54 inverter

3.4. <u>Power Connections</u>

The inverters of the Sinus Penta series are designed both for DC and AC power supply.

The wiring diagrams below show the inverter connection to a low-voltage 3-phase mains.

12-pulse or 18-pulse connections are also possible for modular inverters. In that case, a dedicated transformer and a suitable number of power supply modules are required (see 12-pulse Connection for Modular Inverters).

For certain sizes, VDC direct connection is also available with no need to change the inverter layout; only, a safety fuse is to be installed in the VDC supply line—please refer to Cross-sections of the Power Cables and Sizes of the Protective Devices for the safety fuses to be installed.

CAUTION

For sizes S41, S42, S51, S52, S60, S60P an external precharge system is required, because the precharge circuit is located upstream of the DC voltage power supply terminals.

CAUTION

For sizes S64, S74, S84 an external precharge system is required, because the precharge circuit is not fitted inside the inverter.

DC voltage power supply is normally used for the parallel connection of multiple inverters inside the same cubicle. Output DC power supply units (both uni-directional and bi-directional, with power ratings ranging from 5kW to 2000kW for 200Vac to 690Vac rated voltage) can be supplied by Elettronica Santerno.

To access the power terminals, please refer to sections Gaining Access to Control Terminals and Power Terminals and IP54 Models.

DANGER

Before changing the equipment connections, shut off the inverter and wait at least 20 minutes to allow for the discharge of the heat sinks in the DC-link.

Use only B-type differential circuit breakers.

Connect power supply only to the power supply terminals. The connection of power supply to any other terminal can cause the inverter fault.

Always make sure that the supply voltage ranges between the limits stated in the inverter nameplate.

Always connect the ground terminal to avoid electric shock hazard and to limit disturbance. Always provide a grounding connection to the motor; if possible, ground the motor directly to the inverter.

The user has the responsibility to provide a grounding system in compliance with the regulations in force.

After connecting the equipment, check the following:

- all wires must be properly connected;
- no link is missing;
- no short-circuit is occurring between the terminals and between the terminals and the ground.

To perform a UL compliant installation, the Wire Connectors shall be any Listed (ZMVV) or R/C Wire Connectors and Soldering Lugs (ZMVV2), used with 60°C/75°C copper (Cu) conductor only, within electrical ratings and used with its properly evaluated crimping tool.

CAUTION

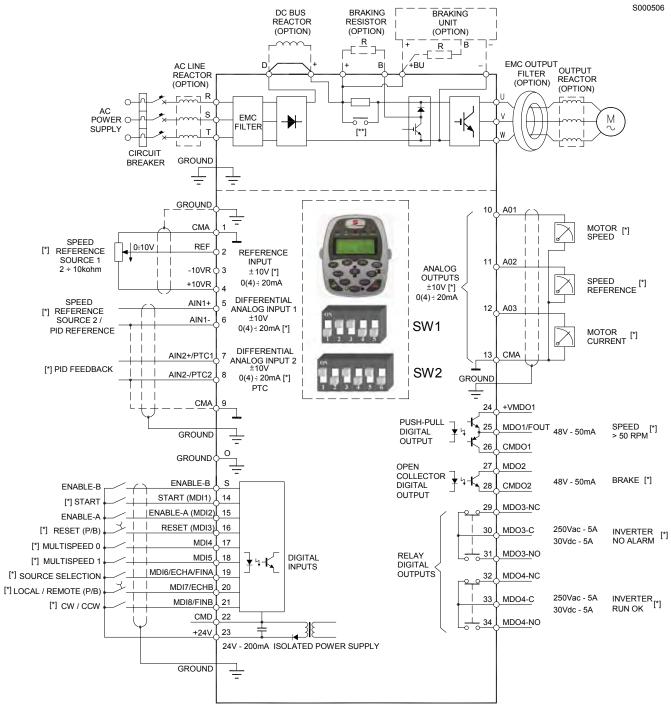
The Field Wiring Terminals shall be used with the tightening torque values specified in the Table of the corresponding section in this Manual.

The Auxiliary Wiring Terminal Blocks, provided for end-use installation connection with external devices, shall be used within the ratings specified. Refer to Cross-sections of the Power Cables and Sizes of the Protective Devices.

Do not start or stop the inverter using a contactor installed over the inverter power supply line.

The inverter power supply must always be protected by fast fuses or by a thermal/magnetic circuit breaker.

Do not apply single-phase voltage.


Always mount antidisturbance filters on the contactor coils and the solenoid valve coils.

At power on, if the inverter commands **ENABLE-A** (terminal 15) and **ENABLE-B** (terminal S) and **START** (terminal 14) are active and the main reference is other than zero, the motor will immediately start.

To prevent the motor from accidentally starting, refer to the Programming Guide to set configuration parameters accordingly. In that case, the motor will start only after opening and closing the command contacts on terminals 15 and terminal S.

3.4.1. Wiring Diagram for inverters S05-S60P

[*] FACTORY DEFAULTS

[**] PRECHARGE CIRCUIT (SEE BELOW)

Figure 29: Wiring diagram

CAUTION

In case of fuse line protection, always install the fuse failure detection device, that disables the inverter, to avoid single-phase operation of the equipment.

NOTE

The wiring diagram relates to factory-setting. Please refer to the Power Terminals section for the ID numbers of the wiring terminals.

NOTE

Please refer to the Inductors section for the applicable input and output inductors.

NOTE

The **ENABLE-A** and **ENABLE-B** inputs are allocated to the STO function. The control mode and control circuit of these signals must be accomplished according to the instructions given in the Safe Torque Off Function - Application Manual. That manual also includes a detailed validation procedure for the STO control configuration to be performed upon first start up of the equipment and also periodically at given time intervals.

CAUTION

Inverter sizes S15, S20 and S30 and modular inverters S65 to S90 require hardware adjustment in order to install DC inductors. This adjustment must be specified when ordering the equipment.

[*]

NOTE

Factory settings can be changed by changing the configuration of the DIP-switches and/or by changing the parameters pertaining to the terminals concerned (see Sinus Penta's Programming Guide).

CAUTION

When no DC inductor is used, terminals **D** and **+** must be short-circuited (factory setting).

[**]

CAUTION

Please contact Elettronica Santerno if DC voltage power supply is to be supplied to Sinus Penta S41, S42, S51, S52, S60 and S60P, as the precharge circuit in the DC-bus capacitors is installed upstream of the DC voltage power supply terminals.

[**]

CAUTION

Please contact Elettronica Santerno if DC voltage power supply is to be supplied to Sinus Penta S64, S74, S84, as no precharge circuit for the DC-bus capacitors is provided.

CAUTION

For S60 and S60P inverters only: if the supply voltage is other than 500Vac, the wiring of the internal auxiliary transformer must be changed accordingly (see Figure 48).

CAUTION

For Sinus Penta S60P only, 48Vdc auxiliary power supply is required (see Figure 48).

3.4.2. Wiring Diagram for Modular Inverters S64-S90

3.4.2.1. External Connections for Modular Inverters S65 and S70

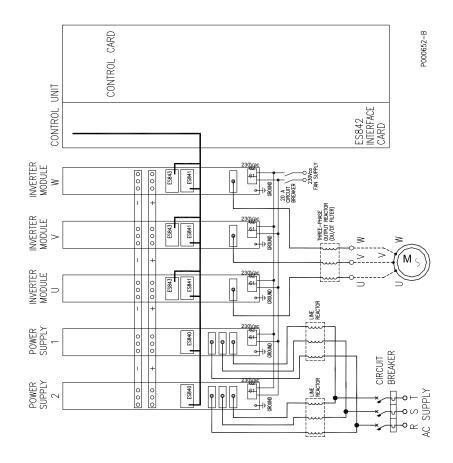


Figure 30: External connections for modular inverters S65-S70

NOTE Power supply unit 2 is available for size S70 only.

NOTE For the installation of a BU, see the section covering the braking unit.

CAUTION In the event of fuse line protection, always install the fuse failure detection device. If a fuse blows, this must disable the inverter to avoid single-phase operation of the equipment.

NOTE Please refer to the Inductors section for the inductors to be used.

3.4.2.2. External Connections for Modular Inverters S64

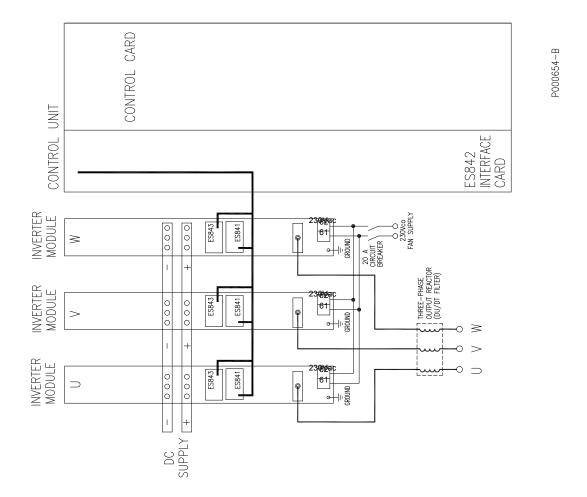


Figure 31: External connections for modular inverters S64

CAUTION

The capacitors inside the DC voltage power supply unit must always be precharged. Failure to do so will damage the inverter as well as its power supply unit.

NOTE

Please refer to the Inductors section for the inductors to be used.

3.4.2.3. External Connections for Modular Inverters S74, S75 and S80

Please refer to the Assembly Instructions for Modular Inverters.

3.4.2.4. External Connections for Modular inverters S84 and S90

Please refer to the Assembly Instructions for Modular Inverters.

3.4.2.5. Internal Connections for Modular Inverters S65 and S70

The following connections are needed:

N. 2 copper bar 60*10mm power connections between power supply and inverter arms for DC voltage supply.

N. 5 connections with 9-pole shielded cable (S70) or N. 4 connections with 9-pole shielded cable (S65) for analog measures.

Type of cable: shielded cable

n. of wires: 9

diameter of each wire: AWG20÷24 (0.6÷0.22mm²) connectors: 9-pole female SUB-D connectors;

Connections inside the cable:

Connector	Female SUB-		Female SUB-		
	D conn.		D conn.		
pin	1	\rightarrow	1		
pin	2	\rightarrow	2		
pin	3	\rightarrow	3		
pin	4	\rightarrow	4		
pin	5	\rightarrow	5		
pin	6	\rightarrow	6		
pin	7	\rightarrow	7		
pin	8	\rightarrow	8		
pin	9	\rightarrow	9		

The following connections are required:

- from control unit to supply 1 (supply 1 control signals)
- from control unit to supply 2 (size S70 only) (supply 2 control signals)
- from control unit to inverter arm U (phase U control signals)
- from control unit to inverter arm V (phase V control signals)
- from control unit to inverter arm W (phase W control signals)

N. 4 connections with unipolar cable pairs, type AWG17-18 (1mm²), for AC, low voltage supply.

- from supply 1 to control unit (power supply + 24 V control unit)
- from supply 1 to driver boards of each power arm (supply line can run from supply to one driver board—e.g. arm U—to arm V, then to arm W) (24 V supply for IGBT driver boards)

N. 7 optical fibre connections, 1mm, standard single plastic material (typical damping: 0.22dB/m), with connectors type Agilent HFBR-4503/4513.

HFBR-4503/4513 — Simplex Latching

Figure 32: Single optical fibre connector

Connections required:

- from control unit to arm U driver board (fault U signal)
- from control unit to arm V driver board (fault V signal)
- from control unit to arm W driver board (fault W signal)
- from control unit to bus voltage reading board assembled on inverter arm U (VB signal)
- from control unit to bus voltage reading board assembled on inverter arm U (sense U signal)
- from control unit to bus voltage reading board assembled on inverter arm V (sense V signal)
- from control unit to bus voltage reading board assembled on inverter arm W (sense W signal)

N.3 optical fibre connections, 1mm, standard double plastic material (typical damping 0.22dB/m), with connectors type Agilent HFBR-4516.

HFBR-4516 — Duplex Latching

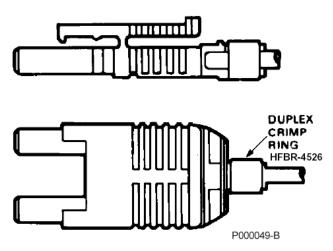


Figure 33: Double optical fibre connector

Connections required:

- from control unit to arm U driver board (IGBT top and bottom control signals)
- from control unit to arm V driver board (IGBT top and bottom control signals)
- from control unit to arm W driver board (IGBT top and bottom control signals)

SINUS PENTA

INTERNAL CONNECTIONS (S65-S70) WIRE CONNECTIONS

Signal	Type of connection	Cable marking	Component	Board	Connector	Component	Board	Connector
control signals, supply 1	9-pole shielded cable	C-PS1	control unit	ES842	CN4	supply 1	ES840	CN8
control signals, supply 2 (*)	9-pole shielded cable	C-PS2	control unit	ES842	CN3	supply 2	ES840	CN8
control signals, phase U	9-pole shielded cable	C-U	control unit	ES842	CN14	phase U	ES841	CN6
control signals, phase V	9-pole shielded cable	C-V	control unit	ES842	CN11	phase V	ES841	CN6
control signals, phase W	9-pole shielded cable	C-W	control unit	ES842	CN8	phase W	ES841	CN6

+24V Power supply, control unit	unipolar cable, 1mm ²	24V-CU	supply 1	ES840	MR1-1	control unit	ES842	MR1-1
0VD Power supply, control unit	unipolar cable, 1mm ²	24V-CU	supply 1	ES840	MR1-2	control unit	ES842	MR1-2
+24VD Power supply, driver boards ES841	unipolar cable, 1mm ²	24V-GU	supply 1	ES840	MR1-3	phase U	ES841	MR1-1
0VD Power supply, driver boards ES841	unipolar cable, 1mm ²	24V-G0	supply 1	ES840	MR1-4	phase U	ES841	MR1-2
+24VD Power supply, driver boards ES841	unipolar cable, 1mm ²	24V-GV	phase U	ES841	MR1-3	phase V	ES841	MR1-1
0VD Power supply, driver boards ES841	unipolar cable, 1mm ²	24V-GV	phase U	ES841	MR1-4	phase V	ES841	MR1-2
+24VD Power supply, driver boards ES841	unipolar cable, 1mm ²	24V-GW	phase V	ES841	MR1-3	phase W	ES841	MR1-1
0VD Power supply, driver boards ES841	unipolar cable, 1mm²	24v-GVV	phase V	ES841	MR1-4	phase W	ES841	MR1-2

OPTICAL FIBRE CONNECTIONS

IGBT command, phase U	double optical fibre	G-U	control unit	ES842	OP19-OP20	phase U	ES841	OP4-OP5
IGBT command, phase V	double optical fibre	G-V	control unit	ES842	OP13-OP14	phase V	ES841	OP4-OP5
IGBT command, phase W	double optical fibre	G-W	control unit	ES842	OP8-OP9	phase W	ES841	OP4-OP5

IGBT fault, phase U	single optical fibre	FA-U	control unit	ES842	OP15	phase U	ES841	OP3
fault IGBT phase V	single optical fibre	FA-V	control unit	ES842	OP10	phase V	ES841	OP3
IGBT fault, phase W	single optical fibre	FA-W	control unit	ES842	OP5	phase W	ES841	OP3
bus bar voltage reading	single optical fibre	VB	control unit	ES842	OP2	one phase	ES843	OP2
IGBT status, phase U	single optical fibre	ST-U	control unit	ES842	OP16	phase U	ES843	OP1
IGBT status, phase V	single optical fibre	ST-V	control unit	ES842	OP11	phase V	ES843	OP1
IGBT status, phase W	single optical fibre	ST-W	control unit	ES842	OP6	phase W	ES843	OP1

(*) Available for S70 only

CAUTION

Carefully check that connections are correct. Wrong connections can adversely affect the equipment operation.

CAUTION

NEVER supply voltage to the equipment if optical fibre connectors are disconnected.

The diagram below illustrates the connections required for the components of the modular inverter model.

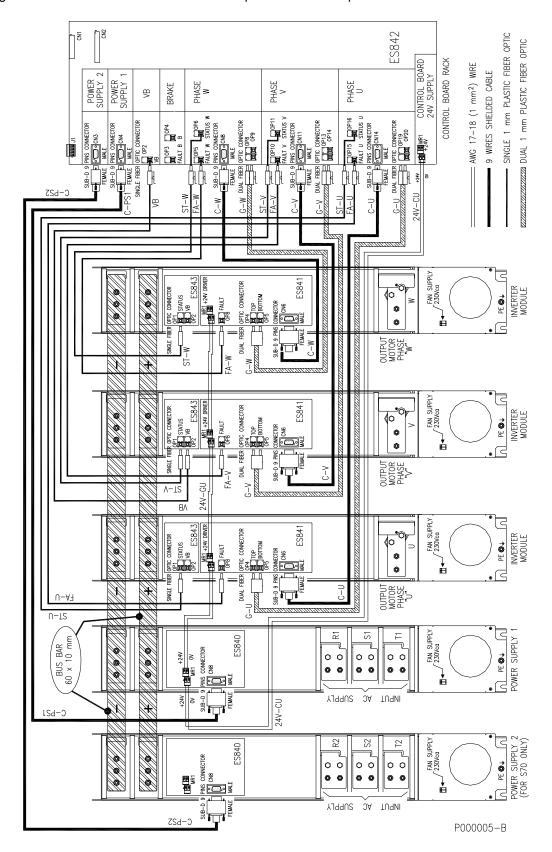


Figure 34: Internal wiring for Sinus Penta S65-S70

Do the following to obtain internal wiring:

1) Gain access to boards ES840, ES841 and ES843. The first board is located on the front part of the supply module; the remaining two boards are located on the front part of each inverter module. Remove the front covers made of Lexan by loosening the cover fastening screws;

00119

Figure 35: ES840 Supply Board

- 1 MR1: +24V Control Unit and Gate Unit supply 2 CN8: Power Supply control signal connector

Figure 36: ES841 Inverter Module Gate Unit Board

- 1 OP1: Board OK
- 2 MR1: 24V gate unit supply
- 3 OP2: Board Fault
- 4 OP3: IGBT Fault
- 5 OP4, OP5: IGBT gate commands
- 6 CN3: Inverter module signal connector

Figure 37: ES843 Bus-bar Voltage Acquisition Board

1 - OP1: IGBT status

2 - OP2: Bus bar voltage reading

2) Gain access to ES842 board located on the control unit; do the following: remove keypad (if fitted) (see Remoting the Display/Keypad) remove the cover of the terminal board after removing its fastening screws remove the cover of the control unit after removing its fastening screws

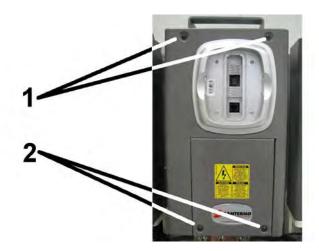


Figure 38: Position of the fastening screws in the terminal board cover and the control unit

- 1 Control unit cover fixing screws
- 2 Control terminal cover screws

3) You can then access to connectors in control board ES842.

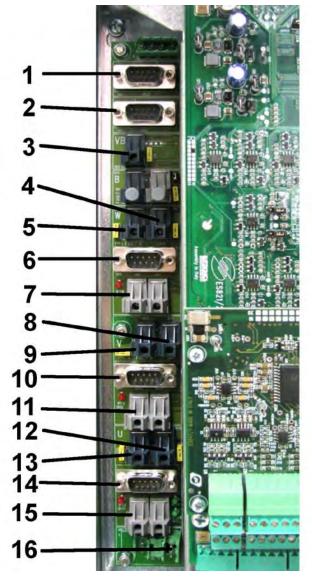


Figure 39: ES842 Control Unit

- 1 CN3: Power Supply 2 Signal Connector
- 2 CN2: Power Supply 1 Signal Connector
- 3 OP2: VB
- 4 OP6: Status IGBT W
- 5 OP5: Fault IGBT W
- 6 CN8: Inverter Module W Signal Connector
- 7 OP8, OP9: Gate W
- 8 OP11: Status IGBT V
- 9 OP10: Fault IGBT V
- 10 CN11: Inverter Module V Signal Connector
- 11 OP13, OP14: Gate V
- 12 OP16: Status IGBT U
- 13 OP15: Fault IGBT U
- 14 CN14: Inverter Module U Signal Connector
- 15 OP19, OP20: Gate U
- 16 MR1: 24V Control Unit Supply

S000133

- 4) Use the connection cable kit to connect the inverter components to each other. Make sure that the tab of the optical fibre connectors is turned outwards to the connector fixed in the control board.
- 5) Reassemble the covers made of Lexan and the covering of the control unit, making sure not to flatten any cable/optical fibre.

3.4.2.6. Internal Connections for Modular Inverters S64

The following links are required:

N. 2 power connections with 60*10mm copper bar between the inverter arms in order to deliver DC voltage.

N. 4 connections with 9-pole shielded cable.

Type of cable: shielded cable

N. of conductors: 9

Diameter of each conductor: AWG20÷24 (0.6÷0.22mm²)

Connectors: 9-pole SUB-D female connectors

Connections within the cable:

Connector	SUB-D female	SUB-D female
	connector	connector
pin	1→	1
pin	2→	2
pin	3→	3
pin	4→	4
pin	5→	5
pin	6→	6
pin	7→	7
pin	8→	8
pin	9→	9

The following links are required:

- from control unit to inverter arm with auxiliary power supply unit (control signals for auxiliary power supply)
- from control unit to inverter arm U (phase U control signals)
- from control unit to inverter arm V (phase V control signals)
- from control unit to inverter arm W (phase W control signals)
- N. 4 connections with AWG17-18 (1mm²) unipolar cable pairs delivering low-voltage DC power supply.
 - from inverter arm with auxiliary power supply unit to control unit (control unit +24V voltage supply)
 - from inverter arm with auxiliary power supply unit to driver boards of each power arm of the inverter (the power supply can be transferred from the supply unit to a driver board, in arm U for instance, then to arm V, finally to arm W). (IGBT driver board 24V power supply.)
- N. 7 optical-fibre connections, 1mm, single standard plastics (0.22dB/m typical attenuation) with Agilent HFBR-4503/4513 connectors.

HFBR-4503/4513 — Simplex Latching

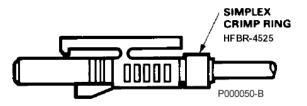


Figure 40: Single optical-fibre connector

The following links are required:

- from control unit to driver board in inverter arm U (U fault signal)
- from control unit to driver board in inverter arm V (V fault signal)
- from control unit to driver board in inverter arm W (W fault signal)
- from control unit to bus voltage detecting board installed on inverter arm U (VB signal)
- from control unit to bus voltage reading board assembled on inverter arm U (sense U signal)
- from control unit to bus voltage reading board assembled on inverter arm V (sense V signal)
- from control unit to bus voltage reading board assembled on inverter arm W (sense W signal)

N.3 optical-fibre connections, 1mm, double standard plastics (0.22dB/m typical attenuation) with Agilent HFBR-4516 connectors.

HFBR-4516 — Duplex Latching

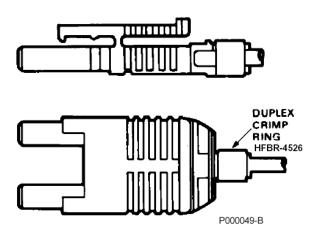


Figure 41: Double optical-fibre connector

The following links are required:

- from control unit to driver board in inverter arm U (top and bottom IGBT control signals)
- from control unit to driver board in inverter arm V (top and bottom IGBT control signals)
- from control unit to driver board in inverter arm W (top and bottom IGBT control signals)

INTERNAL CONNECTIONS FOR S64 WIRE CONNECTIONS

Signal	Type of Connection	Cable Marking	Component	Board	Connector	Component	Board	Connector
control signals for phase U	9-pole shielded cable	C-U	control unit	ES842	CN14	phase U	ES841	CN6
control signals for phase V	9-pole shielded cable	C-V	control unit	ES842	CN11	phase V	ES841	CN6
control signals for phase W	9-pole shielded cable	C-W	control unit	ES842	CN8	phase W	ES841	CN6

+24V control unit power supply	unipolar cable, 1mm²	24V-CU	inverter arm with auxiliary power supply unit	auxiliary power supply unit	MR1-1	control unit	ES842	MR1-1
0V control unit power supply	unipolar cable, 1mm²	24V-CU	inverter arm with auxiliary power supply unit	auxiliary power supply unit	MR1-2	control unit	ES842	MR1-2
ES841 driver board +24VD power supply	unipolar cable, 1mm² (*)	24V-GU	inverter arm with auxiliary power supply unit	auxiliary power supply unit	MR2-1	phase U	ES841	MR1-1
ES841 driver board +0VD power supply	unipolar cable, 1mm² (*)	24V-GU	inverter arm with auxiliary power supply unit	auxiliary power supply unit	MR2-1	phase U	ES841	MR1-2
ES841 driver board +24VD power supply	unipolar cable, 1mm²	24V-GV	phase U	ES841	MR1-3	phase V	ES841	MR1-1
ES841 driver board +0VD power supply	unipolar cable, 1mm²		phase U	ES841	MR1-4	phase V	ES841	MR1-2
ES841 driver board +24VD power supply	unipolar cable, 1mm²	24V-GW	phase V	ES841	MR1-3	phase W	ES841	MR1-1
ES841 driver board +0VD power supply	unipolar cable, 1mm²		phase V	ES841	MR1-4	phase W	ES841	MR1-2

OPTICAL FIBRE CONNECTIONS

IGBT command, phase U	double optical fibre	G-U	control unit	ES842	OP19- OP20	phase U	ES841	OP4-OP5
IGBT command, phase V	double optical fibre	G-V	control unit	ES842	OP13- OP14	phase V	ES841	OP4-OP5
IGBT command, phase W	double optical fibre	G-W	control unit	ES842	OP8-OP9	phase W	ES841	OP4-OP5

IGBT fault, phase U	single optical fibre	FA-U	control unit	ES842	OP15	phase U	ES841	OP3
IGBT fault, phase V	single optical fibre	FA-V	control unit	ES842	OP10	phase V	ES841	OP3
IGBT fault, phase W	single optical fibre	FA-W	control unit	ES842	OP5	phase W	ES841	OP3
bus bar voltage reading	single optical fibre	VB	control unit	ES842	OP2	one phase	ES843	OP2
IGBT status, phase U	single optical fibre	ST-U	control unit	ES842	OP16	phase U	ES843	OP1
IGBT status, phase V	single optical fibre	ST-V	control unit	ES842	OP11	phase V	ES843	OP1
IGBT status, phase W	single optical fibre	ST-W	control unit	ES842	OP6	phase W	ES843	OP1

(*): Factory-set connection provided

CAUTION

Make sure that links are correct, as incorrect links cause the inverter malfunctioning.

CAUTION

NEVER power the inverter when the optical-fibre connectors are not connected.

The figure below shows the links required for the components of the modular inverter.

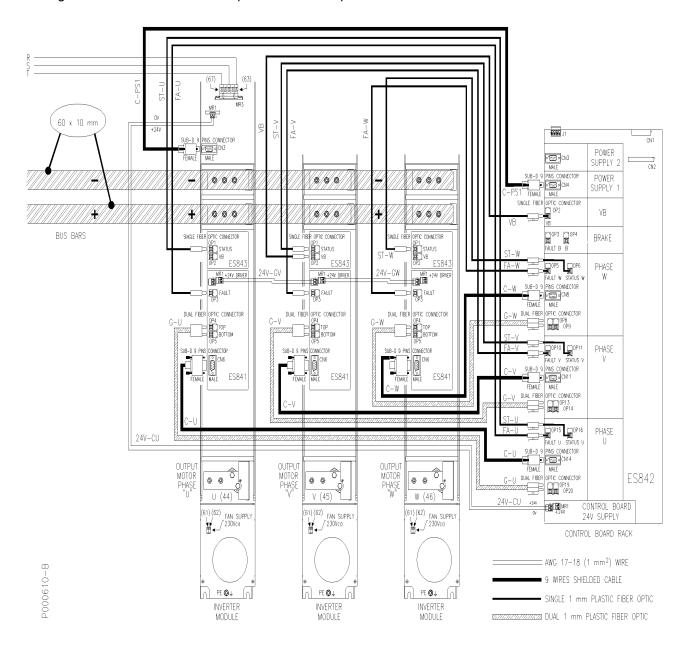


Figure 42: Internal wiring for inverters S64

3.4.2.7. Internal Connections for Modular Inverters S74, S75 and S80

Please refer to the Assembly Instructions for Modular Inverters.

3.4.2.8. Internal Connections for Modular Inverters S84 and S90

Please refer to the Assembly Instructions for Modular Inverters.

3.4.3. 12-pulse Connection for Modular Inverters

12-pulse connection allows reducing current harmonics in the inverter supply line. This solution reduces power supply harmonics by suppressing the lowest harmonics.

The classic power supply design for AC 3-phase inverters provides for a 3-phase diode bridge rectifier directly connected to the DC bus, thus obtaining the diagram of a 6-pulse rectifier. As it is known from the theory, the harmonic spectrum of current drawn by non-linear load, e.g. an adjustable speed drive (inverter), from the mains, depends on the type of input rectifier used in the drive structure. Only harmonics of certain orders appear in the harmonic spectrum, satisfying an equation as follows:

$$h = k \cdot p \pm 1$$
,

where h = harmonic order, k = integral number, p = pulse number of the rectifier.

In case of a 6-pulse rectifier, only harmonics of order: h = 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, ... are present.

Example: THDI=68%

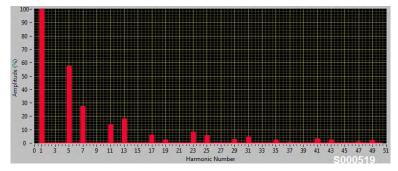


Figure 43: Amplitude of current harmonics in 6-pulse configuration

In order to obtain a 12-pulse rectifier, two AC 3-phase supplies must be available, where each phase in the first supply is 30° shifted against the corresponding one in the second supply (a Dy11d0 or Dy5d0 transformer is required). Each supply feeds a 3-phase diode rectifier and the outputs are put in common on the DC bus. Proper sized input reactors are required between supplies and rectifiers.

According to the above equation, only harmonics of order: h = 1, 11, 13, 23, 24, 35, 37, ... are present.

Example: THDI=11%

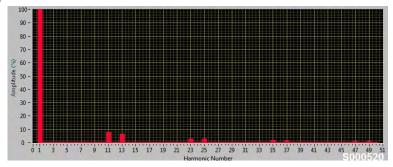


Figure 44: Amplitude of current harmonics in 12-pulse configuration

The basic wiring diagram of the 12-pulse connection for S41..52 is shown below (see Supply Unit for Sinus Penta S41..S52 (SU465):

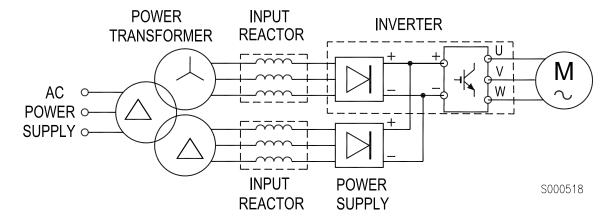


Figure 45: Layout of 12-pulse connection for inverters S41..S52

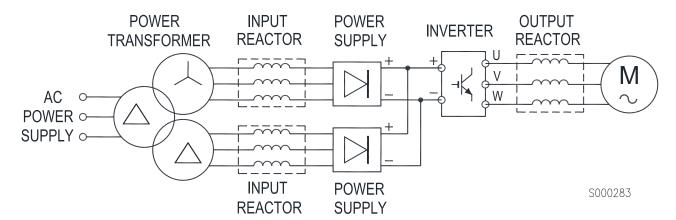


Figure 46: Layout of a 12-pulse connection for modular inverters

An 18-pulse connection may be obtained with configurations similar to the configuration above. The 18-pulse connection requires a transformer with N.3 secondaries shifted by 20° and N. 3 power supply units.

The tables below summarise the possible power supply modes for inverters from S41 to S90. The standard configurations described in the sections above are on green shading (in particular, see the Modular IP00 STAND-ALONE Models (S64–S90)); otherwise, if a different number of modules is required, this is marked on yellow shading.

Inverters power supplied

- through AC 380-500Vac or DC voltage (4C):

Model	Standard AC (4T)	DC Voltage (4C)	AC 12-pulse	AC 18-pulse
0180, 0202, 0217, 0260	S41	S41	S41 + 1 SU465	S41 + 2 SU465 [*]
0313, 0367, 0402	S 51	S51	S51 + 1 SU465	S51 + 2 SU465 [*]
0598, 0748, 0831	S65	S64	S70	S65 + 2 Power Supply units
0964, 1130, 1296	S 75	S74	S75	S80
1800, 2076	S90	S84	S90 + 1 Power Supply unit	S90

Modular inverters power supplied

- through AC 500-600Vac voltage or DC voltage (5C);
- through AC 575-690Vac or DC voltage (6C):

Model	Standard AC (5T/6T)	DC Voltage (5C/6C)	AC 12-pulse	AC 18-pulse
0181, 0201, 0218, 0259	S42	S42	S42 + 1 SU465	S42 + 2 SU465 [*]
0290, 0314, 0368, 0401	S52	S52	S52 + 1 SU465	\$52 + 2 SU465 [*]
0457, 0524, 0598, 0748	S65	S 64	S70	S65 + 2 Power Supply units
0831	S70	S 64	S70	S65 + 2 Power Supply units
0964, 1130	S 75	S74	S75	\$80
1296	S80	S74	S80 + 1 Power Supply unit	S90
1800, 2076	S90	S 84	S90 + 1 Power Supply unit	S90

[*] NOTE

When using the 18-pulse connection, a 24Vdc external supply unit with power ratings equal to or higher than 20W is required.

3.4.4. Power Terminals for S05-S52

Decisive voltage class C according to EN 61800-5-1

	DESCRIPTION
41/R - 42/S - 43/T	Inputs for three-phase supply (the phase sequence is not important).
44/U - 45/V - 46/W	Three-phase motor outputs.
	Link to the DC voltage positive pole. It can be used for
	- DC voltage supply;
47/+	- DC inductors;
,	- the external braking resistor and the external braking unit (for the drive models which are NOT provided with terminal 50/+ dedicated to the external braking resistor)
	- the external braking unit.
47/D	When fitted, link to the positive pole of the continuous AC rectified voltage. It can be used for the inductor—if no DC inductor is used, terminal 47/D must be short-circuited to terminal 47/+ using a cable/bar having the same cross-section as the cables used for power supply; factory setting).
48/B	When available, it can be used to connect the IGBT brake for braking resistors.
	Link to the negative pole of the DC voltage. It can be used for
49/–	- DC voltage power supply;
	- the external braking unit
50/+	When available, it can be used to connect the positive pole of the DC voltage to be used for the external braking resistor only.

S05 (4T)–S15–S20 Terminal board:

	41/ R	42/ S	43/ T	44/ U	45/ V	46/ W	47/+	48/B	49/–		
S05 (2T) Terminal board:											
	41/R	42/ S	43/ T	44/ U	45/ V	46/ W	47/+	47/ D	48/ B	49/–	

CAUTION

Connection bars **47D** and **47+** are short-circuited as a factory setting. The DC inductor, if any, shall be linked between bars **47D** and **47+** after removing the short-circuit.

CAUTION

If DC voltage power supply is required and if an external braking resistor is to be installed, remove the short-circuit between 47/D and 47/+ and use terminal 47/+.

CAUTION

Use terminals 47/+ and 48/B if an external braking resistor is to be installed.

S12 Terminal board (2T-4T)-S14:

CAUTION

Connection bars 47/D and 47/+ are short-circuited as a factory setting. The DC inductor, if any, shall be linked between bars 47/D and 47/+ after removing the short-circuit.

CAUTION

If DC voltage power supply is required and if an external braking resistor is to be installed, remove the short-circuit between 47/D and 47/+ and use terminal 47/+.

CAUTION

Use terminals 47/+ and 48/B if an external braking resistor is to be installed.

S12 Terminal board (5T):

41/R	42/ S	43/ T	47/+	47/D	49/–	44/ U	45/ V	46/ W

S22-32 Terminal board:

48/ B	50/+	47/D	47/+	49/–	41/R	42/ S	43/ T	44/ U	45/ V	46/ W

CAUTION

Connection bars 47/D and 47/+ are short-circuited as a factory setting. The DC inductor, if any, shall be linked between bars 47/D and 47/+ after removing the short-circuit.

CAUTION

If DC voltage power supply is required and if an external braking resistor is to be installed, remove the short-circuit between 47/D and 47/+ and use terminal 47/+.

NOTE

Connect the braking resistor to terminals **50/+** and **48/B**. Avoid using terminals **50/+** and **48/B** for applying DC power supply.

S30 Terminal board:

41/R	42/ S	43/ T	44/ U	45/ V	46/ W	47/+	49/–	48/ B	50/+

NOTE

Connect the braking resistor to terminals **50/+** and **48/B**. Avoid using terminals **50/+** and **48/B** for applying DC voltage power supply.

Connection bars for S41-S42-S51-S52:

CAUTION

Connection bars **47/D** and **47/+** are short-circuited as a factory setting. The DC inductor, if any, shall be linked between bars **47/D** and **47/+** after removing the short-circuit.

CAUTION

Please contact Elettronica Santerno if DC voltage power supply is to be applied to Sinus Penta S41, S42, S51, S52 (precharge circuit for the DC-bus capacitor upstream of the DC voltage power supply terminals).

NOTE

Use terminals 47/+ and 49/- if the external braking unit is to be installed.

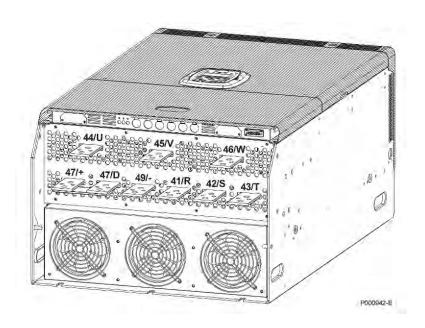


Figure 47: Connection bars in S41-S42-S51-S52

3.4.5. Power Terminals Modified for a DC Inductor

When a DC inductor is required for Sinus Penta S15-20-30, this must be specified when ordering the equipment.

CAUTION

Inverter sizes S15, S20 and S30 and modular inverters S65 to S90 require hardware adjustment in order to install DC inductors. This adjustment must be specified when ordering the equipment.

NOTE

The terminals changed for the connection of a DC inductor are white on grey shading.

CAUTION

Models S05(4T) cannot be changed for the connection of a DC inductor.

S15-S20 Terminal board:

	41/ R	42/ S	43/ T	44/ U	45/ V	46/ W	47/ D	47/+	48/ B
١									

NOTE

Use terminals 47/+ and 48/B if an external braking resistor is to be installed.

S30 Terminal board:

41/ R	42/ S	43/ T	44/ U	45/ V	46/ W	47/ D	47/+	48/B	n.u.

NOTE

Use terminals 47/+ and 48/B if an external braking resistor is to be installed.

3.4.6. Connection Bars for S60P Inverters

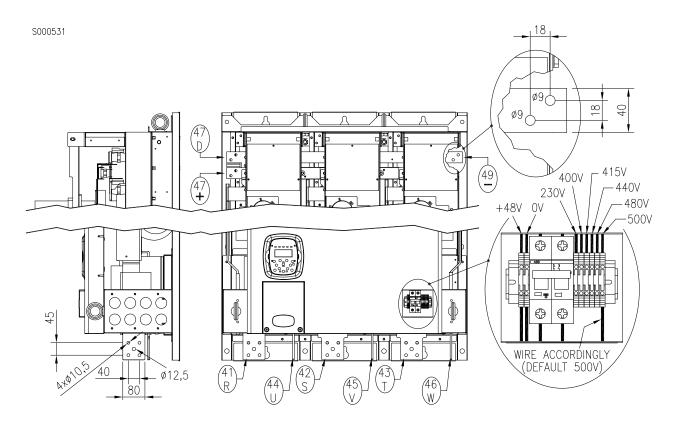


Figure 48: S60 and S60P Connection bars

Figure 48 shows the location and dimension of the bars connecting Sinus Penta drives S60 and S60P to the mains and the motor. The figure also shows the position and the wiring instructions for the built-in power supply transformer. The transformer must be wired based on the rated supply voltage being used.

CAUTION

Connection bars **47/D** and **47/+** are short-circuited as a factory setting. The DC inductor, if any, shall be linked between bars **47/D** and **47/+** after removing the short-circuit.

CAUTION

Please contact Elettronica Santerno if DC voltage power supply is to be applied to Sinus Penta S60 and S60P (precharge circuit for the DC-bus capacitor upstream of the DC voltage power supply terminals).

CAUTION

48Vdc 16A power supply is required for Sinus Penta drives S60P (see Figure 49).

3.4.7. Connection Bars for Modular Inverters \$64-\$70

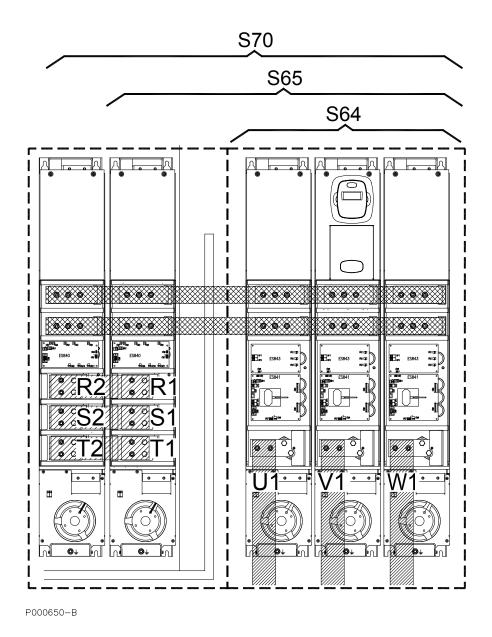


Figure 49: Connection bars for S64-S70

CAUTION

Inverter sizes S65 and S70 require hardware adjustment in order to install DC inductors. This adjustment must be specified when ordering the equipment.

CAUTION

When a DC inductor is to be installed, special-purpose bars are required.

3.4.8. Connection Bars for Modular Inverters S74-S80

Figure 50: Connection bars for S74-S80

CAUTION

Inverter sizes S75 and S80 require hardware adjustment in order to install DC inductors. This adjustment must be specified when ordering the equipment.

CAUTION

When a DC inductor is to be installed, special-purpose bars are required.

3.4.9. Connection Bars for Modular Inverters \$84-\$90

S000266

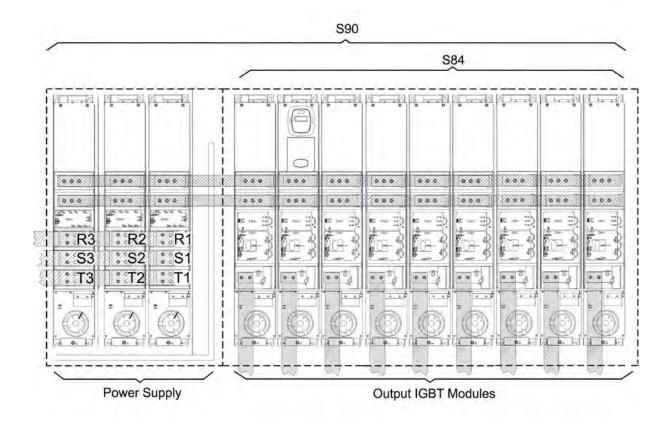


Figure 51: Connection bars for S84-S90

1	CAUTION	Inverter size S90 require hardware adjustment in order to install DC inductors. This adjustment must be specified when ordering the equipment.
<u> </u>	CAUTION	When a DC inductor is to be installed, special-purpose bars are required.
<u> </u>	CAUTION	Please contact Elettronica Santerno if DC supply is to be applied to Sinus Penta S64 to S84 (the precharge circuit of DC-bus capacitors is not present).
<u> </u>	CAUTION	The mounting layout in the figures above may vary based on the accessories being used (input and output inductors, sine filters, harmonic filters).

3.4.10. Auxiliary Power Supply Terminals

The auxiliary power supply terminals are provided in the Penta models requiring auxiliary power supply links to be used to power air-cooling systems.

Decisive voltage class A according to EN 61800-5-1.

Inverter	Terminal	Description	Ratings
\$65-\$64- \$70-\$74-\$75- \$80-\$84-\$90	61–62	Inputs for fan power supply	230Vac/2A

3.4.11. Cross-sections of the Power Cables and Sizes of the Protective Devices

The minimum requirements of the inverter cables and the protective devices needed to protect the system against short-circuits are given in the tables below. It is however recommended that the applicable regulations in force be observed; also check if voltage drops occur for cable links longer than 100m.

For the largest inverter sizes, special links with multiple conductors are provided for each phase. For example, 2x150 in the column relating to the cable cross-section means that two 150mm² parallel conductors are required for each phase.

Multiple conductors shall have the same length and must run parallel to each other, thus ensuring even current delivery at any frequency value. Paths having the same length but a different shape deliver uneven current at high frequency.

Also, do not exceed the tightening torque for the terminals to the bar connections. For connections to bars, the tightening torque relates to the bolt tightening the cable lug to the copper bar. The cross-section values given in the tables below apply to copper cables.

The links between the motor and the Penta drive must have the same lengths and must follow the same paths. Use 3-phase cables where possible.

3.4.11.1. 2T Voltage Class

Size	Sinus Penta Model	Rated Inverter Current	Cable Cross- section Fitting the Terminal	Cable Stripping	Tightening Torque	Cable Cross- section to Mains and Motor Side	(700V) + Disc. Switch	Magnetic Circuit Breaker	AC1 Contactor
		Α	(AWG/kcmils)	mm	Nm	(AWG/kcmils)	Α	Α	Α
	0007	12.5		10	1.2-1.5	2.5 (12AWG)	16	16	25
	8000	15		10	1.2-1.5	2.0 (12/11/0)	16	16	25
	0010	17	0.5÷10	10	1.2-1.5		20	25	25
S05	0013	19	(20÷6AWG)	10	1.2-1.5	4 (10AWG)	20	25	25
	0015	23	(20 0/11/0)	10	1.2-1.5		25	25	25
	0016	27		10	1.2-1.5	8 (8AWG)	32	32	45
	0020	30		10	1.2-1.5	0 (0, 1110)	50	50	45
	0023	38		18	2.5	10 (6AWG)	63	63	60
S12	0033	51	0.5÷25	18	2.5	16 (5AWG)	80	80	80
	0037	65	(20÷4AWG)	18	2.5		80	80	80
	0040	72		15	2.5	25 (4AWG)	100	100	100
S15	0049	80	4÷25 (12÷4AWG)	15	2.5	25 (47,000)	125	100	100
	0060	88		24	6-8	35 (2AWG)	125	125	125
S20	0067	103	25÷70	24	6-8		125	125	125
	0074	120	(3÷2/0AWG)	24	6-8	50 (1/0AWG)	160	160	145
	0086	135		24	6-8		200	160	160
	0113	180	05.405	30	10	95 (4/0AWG)	250	200	250
S30	0129	195	35÷185 (2AWG÷	30	10	100	250	250	250
330	0150	215	350kcmils)	30	10	120 (250kcmils)	315	400	275
	0162	240	occitorinio)	30	10	(250KCIIIIS)	400	400	275
	0180	300	Bus bar	-	M12: 30	185 (400kcmils)	350	400	400
S41	0202	345	Bus bar	-	M12: 30	240 (500kcmils)	500	400	450
(**)	0217	375	Bus bar	-	M12: 30	2x120 (2x4/0AWG)	550	630	450
	0260	425	Bus bar	-	M12: 30	2x120 (2x250kcmils)	630	630	500
	0313	480	Bus bar	-	M12: 30	2x150 (2x300kcmils)	700	630	550
S51 (**)	0367	550	Bus bar	-	M12: 30	2x185 (2x350kcmils)	800	800	600
	0402	680	Bus bar	-	M12: 30	2x240 (2x500kcmils)	1000	800	700
S60 -	0457	720	Bus bar	-	M10: 20	3x150 (3x300kcmils)	1000	800	800
	0524	800	Bus bar	-	M10: 20	3x185 (3x350kcmils)	1000	1000	1000

CAUTION

Always use the correct cable cross-sections and activate the protective devices provided for the inverter. Failure to do so will cause the non-compliance to standard regulations of the system where the inverter is installed.

CAUTION (**)

When applying 12-phase power supply, refer to the values given in Cross-sections of the Power Cables and Sizes of the Protective Devices when the SU465 is Installed.

3.4.11.2. UL-approved Fuses - 2T Voltage Class

UL-approved semiconductor fuses, which are recommended for the Sinus Penta drives, are listed in the table below.

In multiple cable installations, install one fuse per phase (NOT one fuse per conductor).

Fuses suitable for the protection of semiconductors produced by other manufacturers may be used, provided that they have the same or better ratings and

- are Nonrenewable UL Listed Cartridge Fuses, or UL Recognized External Semiconductor Fuses;
- are of the type specifically approved also with reference to the Canadian Standard.

	_			UL-approved	Fuses	Manufactured	d by:		
Size	Sinus Penta Model		cherungen- _{RMS} Symmet				mann Div Coope KA _{RMS} Symmetri		
S	uns We			Ratings			Ratings		
	i <u>s</u>	Mod. No.	Current A _{RMS}	I ² t (230V) A ² sec	Vac	Mod. No.	Current A _{RMS}	I ² t (230V) A ² sec	Vac
		60 033 05 16	16	48	600	170M1409	16	22	
S05	8000								
	0010	60 033 05 20	20	80		170M1410	20	35	
	0013	00 033 03 20	20	80		1701011410	20	33	
	0015	50 142 06 25	25	140		170M1411	25	58	
	0016	50 142 06 32	32	315		FWP-35B	35	40	
	0020	50 142 06 50	50	400		FWP-50B	50	150	
	0023	30 142 00 00		400					_
S12	0033	20 412 20 80	80	1120		FWP-70B	70	500	
	0037	20 112 20 00		1120		FWP-80B	80	600	-
S15	0040 0049	20 412 20 100	100	1720		FWP-100B	100	900	700
	0060	20 412 20 125	125	3100		EIA/D 4054	105	0050	
S20	0067					FWP-125A	125	3650	-
	0074	20 412 20 160 20 412 20 200	160	6700	_	FWP-150A	150 175	5850	-
	0086	20 412 20 200	200	12000	700	FWP-175A	1/5	8400	-
620	0113 0129	20 412 20 250	250	20100	700	FWP-225A	225	15700	
S30	0150	20 412 20 315	315	37000		FWP-250A	250	21300	
	0162	20 412 20 400	400	68000		FWP-350A	350	47800	
	0180	20 622 32 450	450	47300		FWP-450A	450	68500	
S41	0202	20 622 32 500	500	64500		FWP-500A	500	85000	
341	0217	20 622 32 550	550	84000		FWP-600A	600	125000	
	0260	20 622 32 630	630	129000		FWP-700A	700	54000	
	0313	20 622 32 700	700	177000					
S51	0367	20 622 32 800	800	250000		FWP-800A	800	81000	
	0402 0457	20 622 32 1000	1000	542000		FWP-1000A	1000	108000	
S60	0524	20 632 32 1250	1250	924000	1	FWP-1200A	1200	198000	

3.4.11.3. UL-approved Surge Protective Devices (SPDs) - 2T Voltage Class

UL-approved Surge Protective Devices (SPDs), which are recommended for Sinus Penta 2T models, are listed in the table below.

Other devices or systems produced by different manufacturers may be used, provided that they

- are evaluated based on the requirements in Standard UL 1449;
- are evaluated also to withstand the available short circuit current when tested in accordance with UL 1449
- are of the type specifically approved also with reference to the Canadian Standard;
- have Max Voltage Protective Rating of 1kV, non MOV type.

		Rated			UL-a	approved	SPDs M	anufacture	d by		
		Inverter		enix Cor	ntact		Dehn		ERICO		
Size	Sinus Penta	Current	P/N	Ratings		P/N	Ra	Ratings		Ra	tings
Si	Model	A		Short Circuit Current (kA)	Protection Level (kV)		Short Circuit Current (kA)	Protection Level (kV)		Short Circuit Current (kA)	Protection Level (kV)
	0007	12.5									
	8000	15							TDS1501		
	0010	17									
S05	0013	19	VAL-MS						SR240		
	0015	23	230 ST	5	<1	952 300	5	<1		5	<1
	0016	27			`1	932 300	3	`'	(item		
	0020	30	(2798844)						N.702406		
	0023	38							for		
S12	0033	51							Europe)		
	0037	65									

3.4.11.4. 4T Voltage Class

Size	Sinus Penta Model	Rated Inverter Current	Cable Cross- section Fitting the Terminal	Cable Stripping	Tightening Torque	1110101 0140	Fast Fuses (700V) + Disc. Switch	Magnetic Circuit Breaker	AC1 Contactor
		Α	mm² (AWG/kcmils)	mm	Nm	mm² (AWG/kcmils)	Α	Α	Α
	0005	10.5		10	1.2-1.5	2.5 (12AWG)	16	16	25
	0007	12.5		10	1.2-1.5	2.5 (12AVVG)	16	16	25
S05	0009	16.5		10	1.2-1.5		25	25	25
	0011	16.5		10	1.2-1.5	4 (10AWG)	25	25	25
	0014	27	0.5÷10	10	1.2-1.5	1	32	32	30
	0016	26	(20÷6AWG)	10	1.2-1.5		40	40	45
	0017	30		10	1.2-1.5	10 (6AWG)	40	40	45
	0020	30		10	1.2-1.5		40	40	45
S12	0025	41		10	1.2-1.5		63	63	55
	0030	41		10	1.2-1.5		63	63	60
	0034	57	0.5÷25	18	2.5	16 (5AWG)	100	100	100
	0036	60	(20÷4AWG)	18	2.5		100	100	100
	0040	72	` ′	15	2.5	25 (4AWG)	100	100	100
S15	0049	80	4÷25 (12÷4AWG)	15	2.5	20 (17.000)	125	100	100
	0060	88		24	6-8	35 (2AWG)	125	125	125
S20	0067	103	25÷70	24	6-8		125	125	125
320	0074	120	(3÷2/0 AWG)	24	6-8	50 (1/0AWG)	160	160	145
	0086	135		24	6-8		200	160	160
	0113	180	25:105	30	10	95 (4/0AWG)	250	200	250
S30	0129	195	35÷185	30	10	120	250	250	250
330	0150	215	(2AWG÷ 350kcmils)	30	10	(250kcmils)	315	400	275
	0162	240	O O O O O O O O O O O O O O O O O O O	30	10	(ZJUKCITIIS)	350	400	275

(continued)

(continued)

Size	Sinus Penta Model	Rated Inverter Current	Cable Cross- section Fitting the Terminal	Cable Stripping	Tightening Torque	Cable Cross- section to Mains and Motor Side	Fast Fuses (700V) + Disc. Switch	Magnetic Circuit Breaker	AC1 Contactor
		Α	mm² (AWG/kcmils)	mm	Nm	mm² (AWG/kcmils)	Α	Α	Α
	0180	300	Bus bar	-	M12: 30	185 (400kcmils)	400	400	400
S41	0202	345	Bus bar	-	M12: 30	240 (500kcmils)	500	400	450
(**)	0217	375	Bus bar	-	M12: 30	2x120 (2x250kcmils)	550	630	450
	0260	425	Bus bar	-	M12: 30	2x120 (2x250kcmils)	630	630	500
	0313	480	Bus bar	ı	M12: 30	2x150 (2x300kcmils)	700	630	550
S51 (**)	0367	550	Bus bar	-	M12: 30	2x185 (2x350kcmils)	800	800	600
	0402	680	Bus bar	-	M12: 30	2x240 (2x500kcmils	1000	800	700
S60	0457	720	Bus bar	-	M10: 20	3x150 (3x300kcmils)	1000	800	800
300	0524	800	Bus bar	-	M10: 20	3x185 (3x350kcmils)	1000	1000	1000
S60P	0598P	900	Bus bar	-	M10: 20	3x240 (3x500kcmils)	1250	1250	1000
	0598	900	Bus bar	-	M10: 20 M12: 30	3x240 (3x500kcmils)	1250	1250	1000
S65	0748	1000	Bus bar	ı	M10: 20 M12: 30	3x240 (3x500kcmils)	1250	1250	1200
	0831	1200	Bus bar	ı	M10: 20 M12: 30	4x240 (4x500kcmils)	1600	1600	1600
	0964	1480	Bus bar	-	M10: 20 M12: 30	6x150 (6x300kcmils)	2x1000	2000	2x1000
S75	1130	1700	Bus bar	-	M10: 20 M12: 30	6x185 (6x350kcmils)	2x1250	2000	2x1200
	1296	2100	Bus bar	1	M10: 20 M12: 30	6x240 (6x500kcmils)	2x1250	2500	2x1200
500	1800	2600	Bus bar	-	M10: 20 M12: 30	9x240 (9x500kcmils)	3x1250	4000	3x1000
S90	2076	3000	Bus bar	-	M10: 20 M12: 30	9x240 (9x500kcmils)	3x1250	4000	3x1200

CAUTION

Always use the correct cable cross-sections and activate the protective devices provided for the inverter. Failure to do so will cause the non-compliance to standard regulations of the system where the inverter is installed.

CAUTION (**)

When applying 12-phase power supply, refer to the values given in section Cross-sections of the Power Cables and Sizes of the Protective Devices when the SU465 is Installed.

Size	Sinus Penta	Rated Output Current			Tightening Torque	Motor Cable Cross- section
0,	Model	Α	Adc	mm² (AWG/kcmils)	Nm	mm² (AWG/kcmils)
	0598	900	1000	Bus bar	M10: 20 M12: 30	3x240 (3x500kcmils)
S64	0748	1000	1100	Bus bar	M10: 20 M12: 30	3x240 (3x500kcmils)
	0831	1200	1400	Bus bar	M10: 20 M12: 30	4x240 (4x500kcmils)
	0964	1480	1750	Bus bar	M10: 20 M12: 30	6x150 (6x300kcmils)
S74	1130	1700	2000	Bus bar	M10: 20 M12: 30	6x185 (6x350kcmils)
	1296	2100	2280	Bus bar	M10: 20 M12: 30	6x240 (6x500kcmils)
S84	1800	2600	2860	Bus bar	M10: 20 M12: 30	9x240 (9x500kcmils)
304	2076	3000	3300	Bus bar	M10: 20 M12: 30	9x240 (9x500kcmils)

CAUTION

Always use the correct cable cross-sections and activate the protective devices installed on the DC voltage power supply line. Failure to do so will cause the non-compliance to standard regulations of the system where the inverter is installed.

3.4.11.5. UL-approved Fuses - 4T Voltage Class

UL-approved semiconductor fuses, which are recommended for the Sinus Penta drives, are listed in the table below.

In multiple cable installations, install one fuse per phase (NOT one fuse per conductor).

Fuses suitable for the protection of semiconductors produced by other manufacturers may be used, provided that they have the same or better ratings and:

- are Nonrenewable UL Listed Cartridge Fuses, or UL Recognized External Semiconductor Fuses;
- are of the type specifically approved also with reference to the Canadian Standard.

				UL-approved I	uses	Manufactured I	oy:		
Size	Sinus Penta Model	SIBA Sich (200 kA _{RM}	nerungen-Ba s Symmetric	au GmbH cal A.I.C.)				oper (UK) Ltd metrical A.I.C.)	
Si	ow Mo			Ratings				Ratings	
	Sir	Mod. No.	Current Arms	l ² t (500V) A ² sec	Vac	Mod. No.	Current Arms	I ² t (500V) A ² sec	Vac
	0005 0007	20 412 34 16	16	122	690	170M1409	16	36	
S05	0009 0011	20 412 04 25	25	140	660	170M1410	20	58	
	0014	20 412 04 40	40	490					
	0016 0017 0020	50 142 06 40	40	430		FWP-40B	40	160	
S12	0025 0030	20 412 20 63	63	980		FWP-60B	60	475	
	0034 0036	20 412 20 80	80	1820		FWP-80B	80	1200	
S15	0040 0049	20 412 20 100	100	2800		FWP-100B	100	1750	
S20	0060 0067	20 412 20 125	125	5040		FWP-125A	125	5400	
	0074	20 412 20 160	160	10780		FWP-150A	150	8700	
	0086	20 412 20 200	200	19250		FWP-175A	175	12300	
S30	0113 0129	20 412 20 250	250	32760		FWP-225A	225	23000	700
	0150	20 412 20 315	315	60200	_	FWP-250A	250	32000	700
	0162	20 412 20 400	400	109200		FWP-350A	350	70800	
	0180	20 622 32 450	450	77000	700	FWP-450A	450	101400	
S41	0202	20 622 32 500	500	105000	_	FWP-500A	500	125800	
	0217 0260	20 622 32 550 20 622 32 630	550 630	136500 210000	1	FWP-600A	600	185000	
054	0313				_	FWP-700A	700	129000	
S51	0367 0402	20 622 32 700 20 622 32 900	700	287000 665000	_	EMD 000A	000	222000	
	0402	20 632 32 1000	900 1000	602000		FWP-900A FWP-1000A	900 1000	228000 258000	
S60	0524	20 632 32 1000	1250	1225000		FWP-1200A	1200	473000	
S60P	0598P	20 002 02 1200	1200	1220000		1 111 120071	1200	170000	
	0598 0748	20 632 32 1400	1400	1540000		170M6067	1400	1700000	
	0831	2x20 622 32 800	2x800	2x406000		170M6069	1600	2700000	
	0964	2x20 632 32 1000	2x1000	2x602000		2xFWP-1000A	2x1000	2x258000	
S75	1130	2x20 622 32 1250	2x1250	2x1225000		2xFWP-1200A	2x1200	2x473000	
	1296	2x20 632 32 1400	2x1400	2x1540000		2x170M6067	2x1400	2x1700000	
S90	1800	3x20 632 32 1400	3x1400	3x1540000		3x170M6067	3x1400	3x1700000	
390	2076	3x20 632 32 1400	3x1400	3x1540000		3x170M6067	3x1400	3x1700000	

NOTE

In modular sizes (S65–S90), each supply arm shall be protected by a separate fuse (see table above).

3.4.11.6. 5T and 6T Voltage Classes

Size	Sinus Penta Model	Rated Inverter Current	Terminal Cross- section	Cable Stripping	Tightening Torque	Cable Cross- section to Mains and Motor Side	Fast Fuses (700V) + Disc. Switch	Magnetic Circuit Breaker	AC1 Contactor
	0,	Α	mm² (AWG/kcmils)	mm	Nm	mm² (AWG/kcmils)	Α	Α	Α
	0003	7		10	1.2-1.5	2.5 (12AWG)	16	16	25
S12 5T	0004	9	0.5÷16	10	1.2-1.5	2.5 (12AVVO)	16	16	25
S14 6T	0006	11	(20÷5AWG)	10	1.2-1.5		32	32	30
	0012	13	(20 0/11/0)	10	1.2-1.5	4 (10AWG)	32	32	30
	0018	17		10	1.2-1.5		32	32	30
	0019	21		18	2.5-4.5		40	40	45
	0021	25	0.5÷25	18	2.5-4.5	10 (6AWG)	40	40	45
S14	0022	33	(20÷4 AWG)	18	2.5-4.5		63	63	60
	0024	40	,	18	2.5-4.5		63	63	60
	0032	52		18	2.5-4.5	16 (5AWG)	100	100	100
	0042	60	05.50	20	2.5-5	35 (2 AWG)	100	100	100
S22	0051	80	25÷50	20	2.5-5	` ′	100	100	100
	0062	85	(4÷1/0 AWG	20	2.5-5	50 (1/0AWG)	125	125	125
	0069 0076	100 125	25÷95	20 30	2.5-5 15-20		125 200	125 200	125 250
-	0076	150	25-95 (4÷4/0AWG)	30	15-20	70 (2/0AWG)	200	200	250
S32	0131	190	35÷150	30	15-20		315	400	275
032	0164	230	(2/0AWG÷ 300kcmils)	30	15-20	120 (250kcmils)	315	400	275
	0181	305	Bus bar	-	M12: 30		400	400	400
S42	0201	330	Bus bar	-	M12: 30	240 (500kcmils)	450	400	450
(**)	0218	360	Bus bar	-	M12: 30	0.400.(0.050)	500	400	450
	0259	400	Bus bar	-	M12: 30	2x120 (2x250kcmils)	630	630	500
	0290	450	Bus bar	-	M12: 30	2v1E0 (2v200komila)	630	630	550
S52	0314	500	Bus bar	-	M12: 30	2x150 (2x300kcmils)	700	630	550
(**)	0368	560	Bus bar	-	M12: 30	2x185 (2x350kcmils)	800	800	600
	0401	640	Bus bar	-	M10: 20	2x240 (2x500kcmils)	900	800	700
	0457	720	Bus bar	-	M10: 20 M12: 30	3x150 (3x300kcmils)	900	800	800
S65	0524	800	Bus bar	-	M10: 20 M12: 30	3x185 (3x350kcmils)	1000	1000	1000
	0598	900	Bus bar	-	M10: 20 M12: 30	3x240 (3x500kcmils)	1250	1250	1000
	0748	1000	Bus bar	-	M10: 20 M12: 30	one re (enecessame)	1400	1250	1200
S70	0831	1200	Bus bar	-	M10: 20 M12: 30	4x240 (4x500kcmils)	2x800	1600	2x800
S75	0964	1480	Bus bar	-	M10: 20 M12: 30	6x150 (6x300kcmils)	2x1000	2000	2x1000
0.0	1130	1700	Bus bar	-	M10: 20 M12: 30	6x185 (6x400kcmils)	2x1250	2000	2x1000
S80	1296	2100	Bus bar	-	M10: 20 M12: 30	6x240 (6x500kcmils)	3x1000	2500	3x1000
Sau	1800	2600	Bus bar	-	M10: 20 M12: 30	9x240 (9x500kcmils)	3x1000	4000	3x1000
S90	2076	3000	Bus bar	-	M10: 20 M12: 30	9x240 (9x500kcmils)	3x1250	4000	3x1000

CAUTION

Always use the correct cable cross-sections and activate the protective devices provided for the inverter. Failure to do so will cause the non-compliance to standard regulations of the system where the inverter is installed.

CAUTION (**)

When applying 12-phase power supply, refer to the values given in section Cross-sections of the Power Cables and Sizes of the Protective Devices when the SU465 is Installed.

Size	Sinus Penta	Rated Output Current	Rated Input Current	Cable Cross-section Fitting the Terminal	Tightening Torque	Motor Cable Cross- section
S	Model	A	Adc	mm² (AWG/kcmils)	Nm	mm² (AWG/kcmils)
	0457	720	750	Bus bar	M10: 20 M12: 30	3x150 (3x300kcmils)
	0524	800	840	Bus bar	M10: 20 M12: 30	3x185 (3x350kcmils)
S64	0598	900	950	Bus bar	M10: 20 M12: 30	3x240 (3x500kcmils)
	0748	1000	1070	Bus bar	M10: 20 M12: 30	3x240 (3x500kcmils)
	0831	1200	1190	Bus bar	M10: 20 M12: 30	4x240 (4x500kcmils)
	0964	1480	1500	Bus bar	M10: 20 M12: 30	6x150 (6x300kcmils)
S74	1130	1700	1730	Bus bar	M10: 20 M12: 30	6x185 (6x400kcmils)
	1296	2100	1980	Bus bar	M10: 20 M12: 30	6x240 (6x500kcmils)
S84	1800	2600	2860	Bus bar	M10: 20 M12: 30	9x240 (9x500kcmils)
304	2076	3000	3300	Bus bar	M10: 20 M12: 30	9x240 (9x500kcmils)

CAUTION

Always use the correct cable cross-sections and activate the protective devices installed on the DC voltage power supply line. Failure to do so will cause the non-compliance to standard regulations of the system where the inverter is installed.

3.4.11.7. UL-approved Fuses - 5T and 6T Voltage Classes

UL-approved semiconductor fuses, which are recommended for the Sinus Penta drives, are listed in the table below.

In multiple cable installations, install one fuse per phase (NOT one fuse per conductor).

Fuses suitable for the protection of semiconductors produced by other manufacturers may be used, provided that they have the same or better ratings and

- are Nonrenewable UL Listed Cartridge Fuses, or UL Recognized External Semiconductor Fuses;
- are of the type specifically approved also with reference to the Canadian Standard.

				UL-approved	Fuses Ma	nufactured by:			
Size	Sinus Penta Model			en-Bau GmbH metrical A.I.C.)		Bussman (100/200 kA	n Div Coop RMS Symn	per (UK) Ltd netrical A.I.C.)
S	ĭnu: ■		Ratings			Ratings			
		Mod. No.	Current Arms	l ² t (690V) kA ² sec	Vac	Mod. No.	Current Arms	I ² t (690V) kA ² sec	Vac
	0003							0.05	
	0004	00 440 04 40	40	0.18	000	170M1409	16	(0.04@575V)	
S12 5T	0006	20 412 34 16	16	(0.14@575V)	690				
S14 6T	0012			, ,		170M1410	20	0.08 (0.06@575V)	
	0018	20 412 04 25	25	0.08 (0.16@575V)		170M1411	25	0.14 (0.11@575V)	
	0019	20 412 04 25	25	0.22		170M1411	25	0.14	
	0021	20 412 04 32	32	1.50		170M1412	32	0.29	
S14	0022	20 412 20 40	40	0.55		FWP-40B	40	0.32	
	0024 0032	20 412 20 50	50 63	0.85		FWP-50B FWP-70B	50 70	0.6	
	0032	20 412 20 63 20 412 20 80	80	1.54 2.86		FWP-80B	80	2.0 2.4	
	0042	20 412 20 100	100	4.40				3.5	
S22	0062	20 412 20 100	125	7.92		FWP-100B FWP-125B	100 125	7.3	
-	0062	20 412 20 123	160	16.94		FWP-150A	150	11.7	
	0009	20 412 20 180	180	25.41		FWP-175A	175	16.7	
	0088	20 412 20 200	200	30.25		FWP-200A	200	31.3	
S32	0131	20 412 20 250	250	51.48		FWP-250A	250	42.5	700
	0164	20 412 20 315	315	94.6		FWP-300A	300	71.2	
	0181	20 412 20 315	315	94.6		FWP-400A	400	125	
	0201	20 622 32 450	450	113	700	FWP-450A	450	137	
S42	0218	20 622 32 500	500	155		FWP-500A	500	170	
	0259	20 622 32 630	630	309		FWP-600A	600	250	
	0290	20 622 32 630	630	309		FWP-600A	600	250	
S52	0314	20 622 32 700	700	422		FWP-700A	700	300	
332	0368	20 622 32 800	800	598		FWP-800A	800	450	
	0401	20 622 32 900	900	979		FWP-900A	900	530	
	0457	20 622 32 900	900	979		FWP-900A	900	530	
S65	0524	20 622 32 1000	1000	1298		FWP-1000A	1000	600	
303	0598	20 632 32 1250	1250	1802		FWP-1200A	1200	1100	
	0748	20 632 32 1400	1400	2266		2xFWP-700A	2x700	2x300	
S70	0831	2x20 622 32 800	2x800	2x598		2xFWP-800A	2x800	2x450	
S75	0964	2x20 622 32 1000	2x1000	2x1298		2xFWP-1000A	2x1000	2x600	
	1130	2x20 632 32 1250	2x1250	2x1802	[2xFWP-1200A	2x1200	2x1100	
S80	1296	3x20 622 32 1000	3x1000	3x1298		3xFWP-1000A	3x1000	3x600	
S90	1800	3x20 632 32 1250	3x1250	3x1802		3xFWP-1200A	3x1200	3x1100	
	2076	3x20 632 32 1400	3x1400	3x2266		6xFWP-800A	6x800	6x450	

NOTE

In modular sizes S65–S90, each supply arm shall be protected by a separate fuse (see table above).

3.4.12. Inverter and Motor Ground Connection

A bolted screw for the inverter enclosure grounding is located close to the power wiring terminals. The grounding screw is identified by the symbol below:

Always ground the inverter to a state-of-the-art mains. To reduce disturbance and radiated interference to a minimum, connect the motor grounding conductor directly to the inverter following a parallel path to the motor supply cables.

DANGER

Always connect the inverter grounding terminal to the grid grounding using a conductor complying with the safety regulations in force (see table below).

Always connect the motor casing to the inverter grounding to avoid dangerous voltage peaks and electric shock hazard.

Always provide a proper grounding of the inverter frame and the motor casing.

DANGER

The touch current in the ground protective conductor exceeds 3.5mAac/10 mAdc. Please refer to the table below for the dimensioning of the protective conductors.

NOTE

To fulfil UL conformity requirements of the system where the inverter is installed, use a "UL R/C" or "UL Listed" lug to connect the inverter to the grounding system. Use a loop lug fitting the ground screw and having the same cross-section as the ground cable being used.

Protective earthing conductor cross-section (refer to EN 61800-5-1):

Cross-sectional area of phase conductors of the inverter (mm²)	Minimum cross-sectional area of the corresponding protective earthing conductor (mm ²)
S ≤ 10	10 (*)
10 < S ≤ 16	S (*)
16 < S ≤ 35	16
35 < S	S/2

NOTE

The values in the table above are valid only if the protective earthing conductor is made of the same metal as the phase conductors.

If this is not so, the cross-sectional area of the protective earthing conductor shall be determined in a manner which produces a conductance equivalent to that which results from the application of the table above.

NOTE (*)

In any case, a cross-section of the protective earthing conductor of at least 10 mm² Cu or 16 mm² Al is required to maintain safety in case of damage to or disconnection of the protective earthing conductor (refer to EN 61800-5-1 about Touch current).

SINUS PENTA INSTALLATION GUIDE

3.5. <u>Control Terminals</u>

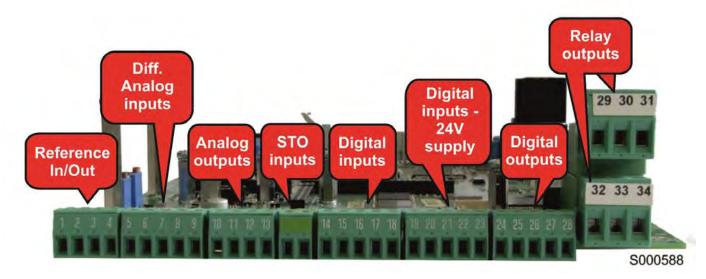


Figure 52: Control terminals

3.5.1. Main Features

Screwable terminal board in seven extractable sections suitable for cross-sections $0.08 \div 1.5 \text{mm}^2$ (AWG 28-16).

Decisive voltage class A according to EN 61800-5-1.

No.	Name	Description	I/O Features	DIP-switch
1	CMA	0V for main reference (connected to control 0V)	Control board zero volt	
	DEE	Input for single-ended main reference to be configured either as	Vfs = \pm 10 V, Rin = $50k\Omega$; Resolution: 12 bits	SW1-1: Off (default)
2 REF	a voltage input or as a current input	0 (4) ÷ 20 mA, Rin = 250 Ω ; Resolution: 11 bit	SW1-1: On	
3	-10VR	Negative reference supply output for external potentiometer	-10V Imax: 10mA	
4	+10VR	Positive reference supply output for external potentiometer	+10V Imax: 10mA	
5	AIN1+	Differential auxiliary analog input 1 to be configured either as a	Vfs = \pm 10 V, Rin = $50k\Omega$; Resolution: 12 bits	SW1-2: Off
6	AIN1-	voltage input or as a current input	0 (4) ÷ 20 mA, Rin = 250 Ω;	SW1-2: On

5	AIN1+	Differential auxiliary analog input 1 to be configured either as a	Vfs = \pm 10 V, Rin = $50k\Omega$; Resolution: 12 bits	SW1-2: Off
6	AIN1-	voltage input or as a current input	0 (4) ÷ 20 mA, Rin = 250 Ω ; Resolution: 11 bits	SW1-2: On (default)
7	AIN2+/PTC1		Vfs = \pm 10 V, Rin = $50k\Omega$; Resolution: 12 bits	SW1-3: Off SW1-4,5: Off
8	8 AIN2-/ PTC2	Differential auxiliary analog input 2 to be configured either as a voltage input or as a current input, or to be configured as a PTC acquisition input for motor protection	0 (4) \div 20 mA, Rin = 250 Ω ; Resolution: 11 bits	SW1-3: On SW1-4,5: Off (default)
			Motor protection PTC reading according to DIN44081/DIN44082	SW1-3: Off SW1-4,5: On
9	CMA	0V for auxiliary inputs (connected to control 0V)	Control board zero volt	

10	AO1	Analog output 1 to be configured either as a voltage output or as a current output	Vout = ± 10 V; loutmax = 5 mA; Resolution: 11 bits	SW2-1: On; SW2-2: Off (default)
		as a current output	0 (4) ÷ 20 mA; Voutmax = 10V Resolution: 10 bits	SW2-1: Off; SW2-2: On
11	11 AO2	Analog output 2 to be configured either as a voltage output or	Vout = ±10V; loutmax = 5mA Resolution: 11 bits	SW2-3: On; SW2-4: Off (default)
		as a current output	0 (4) ÷ 20 mA; Voutmax = 10V Resolution: 10 bits	SW2-3: Off; SW2-4: On
12	12 AO3	Analog output 3 to be configured either as a voltage output or as a current output	Vout = ±10V; loutmax = 5mA Resolution: 11 bits	SW2-5: On; SW2-6: Off (default)
		as a current output	0 (4) ÷ 20 mA; Voutmax = 10V Resolution: 10 bits	SW2-5: Off; SW2-6: On
13	CMA	0V for main reference (connected to control 0V)	Control board zero volt	

s	ENABLE-B	Active input: inverter run enabled. Inactive input: freewheeling regardless of the control mode; converter not commutating. To be enabled/disabled in conjunction with ENABLE-A	24Vdc opto-isolated digital input; positive logic (PNP type): active with high signal in respect to CMD (terminal O). Compliant with EN 61131-2 as Type 1 digital inputs with 24Vdc nominal voltage. Max. response time to processor: 500µs	
0	CMD		Control board zero volt	

(continued)

SINUS PENTA

(continued)

N.	Name	Description	I/O Features	DIP-switch
14	START (MDI1)	Active input: inverter running. Inactive input: main ref. is reset and the motor stops with a deceleration ramp Multifunction digital input 1	Opto-isolated digital inputs 24 VDC; positive logic (PNP): active with greater signal in respect to	
15	ENABLE-A (MDI2)	Active input: inverter running enabled Inactive input: motor idling regardless of control mode; inverter not switching To be enabled/disabled in conjunction with ENABLE-B Multifunction digital input 2	CMD (terminal 22). In compliance with EN 61131-2 as type-1 digital inputs with rated voltage equal to 24 VDC. Max. response time to processor: 500	
16	RESET (MDI3)	Alarm reset function Multifunction digital input 3	μs	
17	MDI4	Multifunction digital input 4		
18	MDI5	Multifunction digital input 5		

19	MDI6 / ECHA / FINA	Multifunction digital input 6; Encoder dedicated input, push-pull 24 V single-ended phase A, frequency input A	Opto-isolated digital inputs 24 VDC; positive logic (PNP): active
20	MDI7 / ECHB	Multifunction digital input 7; Encoder dedicated input, push-pull 24 V single-ended, phase B	with greater signal in respect to CMD (terminal 22). In compliance
21	MDI8 / FINB	Multifunction digital input 8; Frequency input B	with EN 61131-2 as type-1 digital inputs with rated voltage equal to 24 VDC. Max. response time to processor: 600 μs
22	CMD	0V digital input isolated to control 0V	Opto-isolated digital input zero volt
23	+24V	Auxiliary supply output for opto-isolated multifunction digital inputs	+24V±15% ; Imax: 200mA Protect with resettable fuse
24	+VMDO1	Supply input for MDO1 output	20 ÷ 48 VDC; IDC = 10 mA + output current (max 60 mA)

25	MDO1/ FOUT	Multifunction digital output 1; frequency output	Opto-isolated digital output (push- pull); Iomax = 50 mA max; fout max 100 kHz.
26	CMDO1	0V Multifunction digital output 1	Common for supply and multifunction output 1
27	MDO2	Multifunction digital output 2	Opto-isolated digital output (open collector); Vomax = 48 V; Iomax = 50mA
28	CMDO2	Common for multifunction digital output 2	Common for multifunction output 2

Screwable terminal board in two extractable sections suitable for cross-sections $0.2 \div 2.5 \text{ mm}^2$ (AWG 24-12).

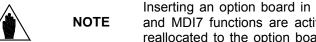
Decisive voltage Class C according to EN 61800-5-1.

N.	Name	Description	I/O Features	DIP- switch
29	MDO3-NC	Multifunction, relay digital output 3 (NC contact)	Change-over contact: with low logic level, common terminal is	
30	MDO3-C	Multifunction, relay digital output 3 (common)	closed with NC terminal; with high logic level, common terminal is	
31	MDO3-NO	Multifunction, relay digital output 3 (NO contact)	open with NO terminal; Vomax = 250 VAC, Iomax = 5A Vomax = 30 VDC, Iomax = 5A	

32	MDO4-NC	Multifunction, relay digital output 3 (NC contact)	Change-over contact: with low logic level, common terminal is	
33	MDO4-C	Multifunction, relay digital output 4 (common)	closed with NC terminal; with high logic level, common terminal is	
34	MDO4-NO	Multifunction, relay digital output 4 (NO contact).	open with NO terminal; Vomax = 250 VAC, Iomax = 5A Vomax = 30 VDC, Iomax = 5A	

NOTE

NOTE



Analog outputs are inactive under the following circumstances (digital outputs inactive and 0V / 0mA for analog outputs):

- inverter off
- inverter initialization after startup
- inverter in emergency mode (see Sinus Penta's Programming Guide)
- updating of the application firmware

Always consider those conditions when operating the inverter.

The firmware considers encoder inputs MDI6/ECHA, MDI7/ECHB as ENCODER A in the terminal board.

Inserting an option board in slot C reallocates the digital inputs and only MDI6 and MDI7 functions are active, while the ENCODER A acquisition function is reallocated to the option board. For more details, see ES836/2 Encoder Board (Slot A), ES913 Line Driver Encoder Board (Slot A) and the Sinus Penta's Programming Guide.

The ENABLE-A and ENABLE-B inputs are allocated to the STO function. The control mode and control circuit of these signals must be accomplished according to the instructions given in the Safe Torque Off Function - Application Manual.

That manual also includes a detailed validation procedure for the STO control configuration to be performed upon first start up of the equipment and also every 12 months.

The inverters of the Sinus Penta series include special conductor terminals connected to the inverter grounding (conductor terminals are located near the control terminals). Their function is dual: they allow cables to be mechanically fastened and they allow braiding of signal shielded cables to be grounded. The figure shows how to wire a shielded cable.

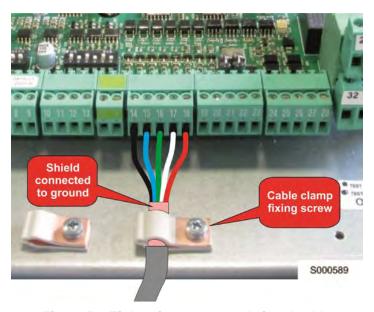


Figure 53: Tightening a screened signal cable

CAUTION

If no state-of-the-art wiring is provided, the inverter will be more easily affected by disturbance. Do not forget that disturbance may also accidentally trigger the motor startup.

3.5.2. Gaining Access to Control Terminals and Power Terminals

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal components to avoid any electric shock hazard.

DANGER

Do not connect or disconnect signal terminals or power terminals when the inverter is on to avoid electric shock hazard and to avoid damaging the inverter.

NOTE

The user is authorised to remove only the fixing elements of the parts mentioned in this section or in other sections in this manual (such as the terminals cover, the access to the serial interface connector, the cable raceway plates, and so on).

Removing fixing elements in order to access parts not mentioned in this manual will void the product warranty.

3.5.2.1. IP20 and IP00 Models

To access the inverter control terminals, loosen the two fastening screws shown in the figure below and remove the cover.

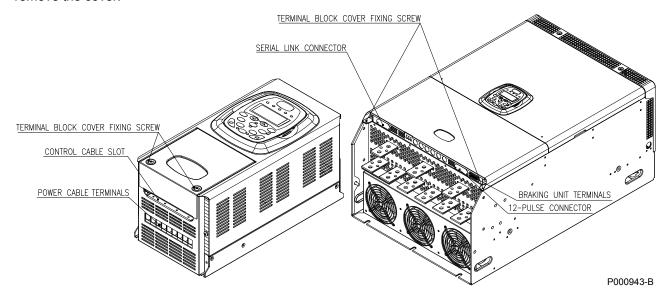


Figure 54: Gaining access to the control terminals

Size S05 to S15: remove the cover to reach power terminals as well. Upper sizes: removing the cover allows reaching control signals only.

3.5.2.2. IP54 Models

To reach the control terminals and power terminals, remove the front panel by removing its fastening screws. The following can be accessed:

- control terminals,
- power terminals,
- serial interface connector.

For ingoing/outgoing cables, pierce some holes in the inverter bottom plate. To remove the inverter bottom plate, remove its fastening screws.

Figure 55: Gaining access to terminal boards in models IP54

CAUTION

CAUTION

For ingoing/outgoing cables through the inverter bottom plate, the following safety measures are required to maintain degree of protection IP54: cable-glands or similar with degree of protection not lower than IP54.

Always remove the inverter bottom plate before piercing holes for ingoing/outgoing cables, thus preventing metals chips from entering the equipment.

3.5.3. Control Board Signals and Programming

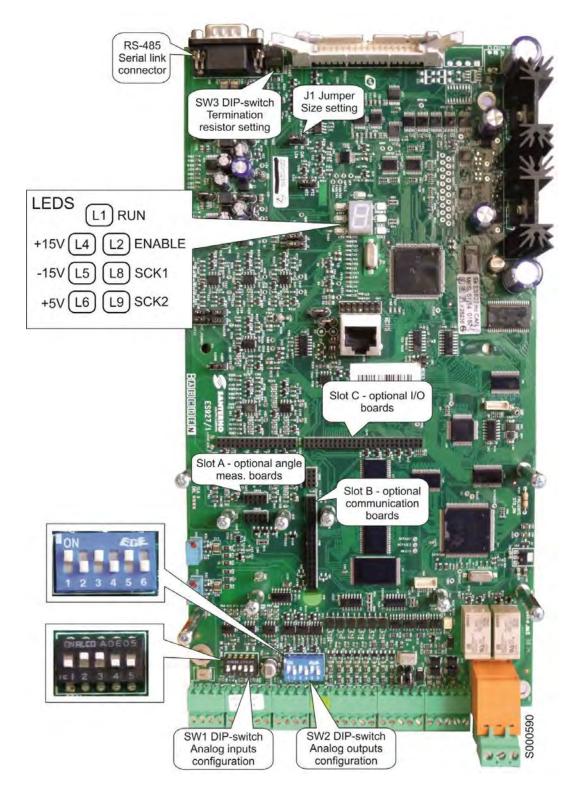


Figure 56: Control board: signals and programming

3.5.3.1. Display and Indicator LEDs

The board display and indicator LEDs allow viewing the inverter operating condition even if no user interface (display/keypad) is provided. The keypad housing allows displaying the indicator lights. The indicator LEDs are the following:

Figure 57: Control board LEDs

- **Green LED L1 (RUN)**: If on, it indicates that processors are active. If it does not turn on when the inverter is normally operating, this means that the power supply unit or the control board is faulty.
- **Yellow LED L2 (ENABLE)**: If on, it indicates that the power converter is switching and is powering the connected load (terminals U, V, W). If off, all switching devices of the power converter are inactive and the connected load is not powered.

DANGER

Electric shock hazard exists even if the power converter is not operating and the inverter is disabled. Possible dangerous voltage peaks on terminals U, V, W may occur. Wait at least 20 minutes after switching off the inverter before operating on the electrical connection of the motor or the inverter.

- **Green LED L4 (+15V OK)**: It comes on when it detects positive analog power supply (+15V). If it does not turn on when the inverter is normally operating, this means that the power supply unit or the control board is faulty.
- **Green LED L5 (-15V OK):** It comes on when it detects negative power supply (-15V). If it does not turn on when the inverter is normally operating, this means that the power supply unit or the control board is faulty.
- **Green LED L6 (+5V OK)**: It comes on when it detects I/O power supply (+5V). It turns off to indicate the following conditions:
 - o Short-circuit over the power supply delivered to connector RS485 output.
 - Short-circuit over the power supply delivered to the connector output of the remotable keypad.
 - Parameter guick storage and autoreset procedure due to "VDC undervoltage".
- Yellow LED L8 (SCK1): please refer to Safe Torque Off Function Application Manual
- Yellow LED L9 (SCK2): please refer to Safe Torque Off Function Application Manual

NOTE

Yellow **LEDs L2**, **L8** and **L9** are used when validating the product and when periodically checking the integrity of the Safe Torque Off Function - Application ManualSTO function. The drive must be installed in such a way so as to allow the service technician to display the LED status, also by removing the display module, if required. Please refer to the instructions included in the Safe Torque Off Function - Application Manual for any details.

The messages appearing on the 7-segment display are the following:

Normal operation and alarms					
Symbol or sequence displayed	Inverter condition				
	Inverter initialization stage.				
	Inverter ready waiting for ENABLE-A and ENABLE-B .				
	Inverter ready waiting for the ENABLE-A and ENABLE-B signals; see Sinus Penta's Programming Guide, parameter C181 .				
	Inverter ready waiting for the START signal; see Sinus Penta's Programming Guide, Power Down and DC Braking menus.				
	Motor not running because the PID value is disabled; see Sinus Penta's Programming Guide, parameters P254 and P255 .				
	Motor not running because the PID value is disabled: number "4" fixed; see Sinus Penta's Programming Guide, parameters P065 and P066 .				
15.	IFD enabled but waiting for the START signal.				
	IFD enabled and START signal on but waiting for reference: the actual value of the reference is below the minimum value.				
	Waiting for precharge; inverter is waiting for VDC voltage inside the capacitor to exceed the minimum operating value.				
	Inverter enabled (power devices activated): a segment rotates to form an 8-shaped figure.				
	Emergency condition: a 3-digit alarm code cyclically flashes on the display (the example shows alarm A019).				

Hardware failure messages					
Symbol or sequence displayed	Inverter condition				
	Hardware Failure				
	The self-diagnostics function integrated to the control board detected a hardware/software failure. Please contact ELETTRONICA SANTERNO's				
	Customer Service.				

Operating firmware update (flash memory) messages				
Symbol or sequence displayed	Inverter condition			
	Flash memory deletion: letter 'E' flashing.			
	Flash memory programming: letter 'P' flashing.			
	An alarm tripped while deleting or programming the software flash memory. Repeat programming: letter 'A' flashing .			
	Autoreset: letter 'C' flashing.			

Current limit and voltage limit while running					
Symbol or sequence displayed	Inverter condition				
	Current limit while accelerating or voltage limit due to overload conditions; letter 'H' flashing if the output current is limited to the values set in the operating parameters.				
	$\frac{\text{Output voltage limit;}}{\text{the motor due to a V_{DC} too weak value.}}$				
	Voltage limit when decelerating; letter U_flashing if V _{DC} in the equipment exceeds the rated value by 20% during dynamic braking.				
	Braking function active; letter D flashing when the inverter is stopping the motor by applying DC voltage. See Sinus Penta's Programming Guide, DC Braking function.				

NOTE

The display can be seen only after removing the remotable keypad. Please refer to the relevant section for more details.

3.5.3.2. DIP-switches

The inverter control board includes three banks of DIP-switches (SW1, SW2, and SW3) for the following functions:

- DIP-switch SW1: analog input configuration
- DIP-switch SW2: analog output configuration
- DIP-switch SW3: line termination over line RS485

To gain access to DIP-switches SW1 and SW2, remove the front cover of the control terminals by loosening the relevant fastening screws.

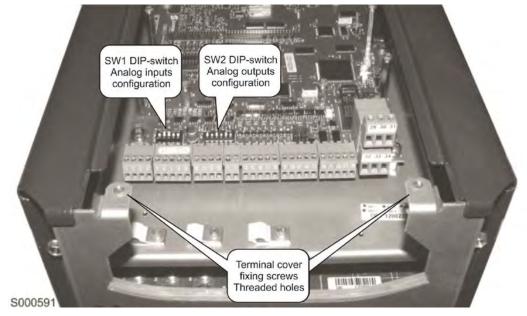


Figure 58: Gaining access to DIP-switches SW1 and SW2

To gain access to DIP-switch SW3, remove the protecting cover for connector RS485. Sinus Penta S05 to S22: DIP-switch SW3 is located on the control board next to interface connector RS485; remove the inverter upper cover to gain access to DIP-switch SW3.

Figure 59: Gaining access to DIP-switch SW3 and connector RS485 (Sinus Penta S05 to S22)

Sinus Penta S30 to S60P: interface connector RS485 and DIP-switch SW3 are located next to the control terminal board cover.

Sinus Penta S65 and S70: to gain access to DIP-switch SW3, remove the cover located on the rear part of the control board.

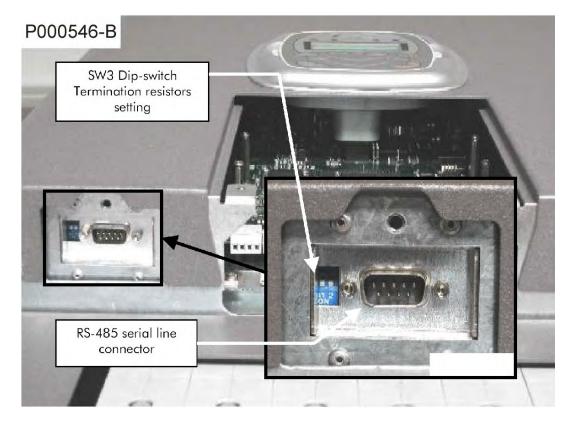
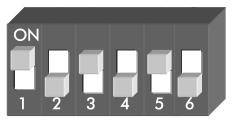


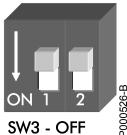
Figure 60: Position of DIP-switch SW3 and connector RS485 (Sinus Penta S30 to S60P)

For IP54 inverters, you can gain access to serial port connector RS485 and to dipswitch SW3 from the inside of the front door covering wires and cables.

DIP-switch functionality is detailed in the tables below

DIP-switch SW1: analog input configuration							
Switch(es)	Fur	ectionality					
SW1-1	OFF : REF voltage input (DEFAULT)	ON: REF analog input (current input)					
SW1-2	OFF: AIN1 voltage input	ON: AIN1 analog input (current input)					
		(DEFAULT)					
SW1-3	OFF : AIN2 voltage input or motor	ON : AIN2 analog input (current input)					
	protection PTC acquisition	(DEFAULT)					
SW1-4,	Both OFF: AIN2 current input or voltage	Both ON: AIN2 input for motor protection PTC					
SW1-5	input based on SW1-3 (DEFAULT)	acquisition					


DIP-switch SW	2: analog output configuration
Switches	Functionality
SW2-1,	1=ON, 2=OFF: AO1 voltage output 1=OFF, 2=ON: AO1 current output
SW2-2	(DEFAULT)
SW2-3,	3=ON, 4=OFF: AO2 voltage output 3=OFF, 4=ON: AO2 current output
SW2-4	(DEFAULT)
SW2-5,	5=ON, 6=OFF: AO3 voltage output 5=OFF, 6=ON: AO3 current output
SW2-6	(DEFAULT)



DIP-switch SW3: interface RS485 terminator						
Switches	s Functionality					
SW3-1,	Both	OFF:	RS485	terminator	disabled	Both ON: RS485 terminator enabled
SW3-2	(DEFA	ULT)				

DIP-switch factory setting is as follows:

SW1- All OFF except 2 and 3

SW2 - Odd numbers ON

Factory setting provides the following operating modes:

- REF Analog input (voltage input) and two current analog inputs (AIN1, AIN2)
- Voltage analog outputs
- Terminator RS485 off

3.5.3.3. Configuration Jumpers

The inverter control board is provided with two configuration jumpers called J1 and J2 for the setup of the inverter size. These jumpers are factory-set based on the inverter size required and must not be tampered

When a spare control board is installed, jumper J1 only is to be set up accordingly. In that case, the spare control board is supplied in "Spare" mode.

Jumper	Position
J1	1-2 = IU CAL 2-3 = IU LEM - See Spare Control Board User Manual
J2	Leave position unchanged

3.5.4. Digital Inputs (Terminals 14..21 and Terminal S)

All digital inputs are galvanically isolated in respect to zero volt of the inverter control board. Consider isolated power supply on terminals 23 and 22 or 24V auxiliary supply before activating the inverter digital inputs.

The figure below shows the different control modes based on the inverter supply or the output of a control system (e.g. PLC). Internal supply (+24 VDC)—terminal 23—is protected by a 200mA resettable fuse.

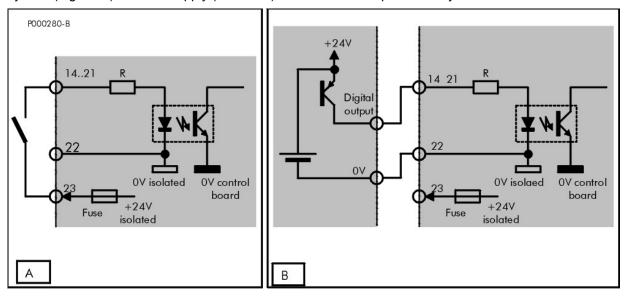


Figure 61: PNP command (active to +24V)

A) through a voltage-free contact

B) outcoming from a different device (PLC, digital output board, etc.)

NOTE

Terminal 22 (digital input zero volt) is galvanically isolated from terminals 1, 9, 13 (control board zero volt) and from terminals 26 and 28 (common terminals of the digital outputs).

The digital input condition is displayed on the inverter display/keypad in the Measures menu as measure M033. Logic levels are displayed as \square for the inactive input and as \blacksquare for the active input.

The inverter firmware acknowledges all inputs as multifunction inputs. Dedicated functions assigned to terminals START (14), ENABLE-A (15), ENABLE-B (S), RESET (16), MDI6 / ECHA / FINA(19), MDI7 / ECHB (20), and MDI8 / FIN B(21) are also available.

3.5.4.1. START (Terminal 14)

To enable the Start input, set the control modes via terminal board (factory setting). When the START input is active, the main reference is enabled; otherwise, the main reference is set to zero. The output frequency or the speed motor drops to zero in respect to the preset deceleration ramp.

3.5.4.2. ENABLE-A (Terminal 15) and ENABLE-B (Terminal S)

The ENABLE-A and ENABLE-B inputs are <u>always to be activated</u> to enable the inverter operation regardless of the control mode.

If the ENABLE inputs are disabled, the inverter output voltage is <u>always</u> set to zero, so the motor performs a coast to stop.

The internal circuit managing the ENABLE signal is redundant and is more efficient in avoiding sending any switching signal to the three-phase converter. Certain applications allow getting rid of the contactor installed between the inverter and the motor. Always consider any specific standard for the inverter application and observe the safety regulations in force.

Please refer to the Safe Torque Off Function - Application Manual.

Figure 62: Power section PWM enable circuit

3.5.4.3. RESET (Terminal 16)

If an alarm trips:

- the inverter stops
- the motor is no longer powered and performs a coast to stop
- the display shows an alarm message.

Open the reset input for a while (factory setting: MDI3 on terminal 16), or press the RESET key on the keypad to reset the alarm. This happens only if the cause responsible for the alarm has disappeared. If factory setting is used, once the inverter is unlocked, it is not necessary to activate and deactivate the ENABLE-A and ENABLE-B commands to restart the inverter.

NOTE

Factory setting does not reset alarms at power off. Alarms are stored and displayed at next power on and the inverter is locked. A manual reset is then required to unlock the inverter.

CAUTION

If an alarm trips, see the Diagnostics section in the Sinus Penta's Programming Guide and reset the equipment after detecting the cause responsible for the alarm.

DANGER

Electric shock hazard persists even when the inverter is locked on output terminals $(U,\ V,\ W)$ and on the terminals used for the connection of resistive braking devices (+,-,B).

CAUTION

The motor performs a coast to stop when the inverter is locked due to an alarm trip or when the ENABLE-A and ENABLE-B inputs are inactive. In case a mechanical load with persistent resisting torque (e.g. lifting applications) is used, a motor coast to stop may cause the load to drop. In that case, always provide a mechanical locking device (brake) for the connected load.

3.5.4.4. Connecting the Encoder and Frequency Input (Terminals 19 to 21)

Functionality of the programmable digital inputs is given in the Programming Guide.

Digital inputs MDI5, MDI6, MDI7 may acquire fast digital signals and be used for the connection of an incremental encoder (push-pull encoder, single-ended encoder) and/or for the acquisition of a frequency input. An incremental encoder must be connected to "fast" inputs MDI6/ECHA/FINA(19) and MDI7/ECHB (20) as shown in the figure below.

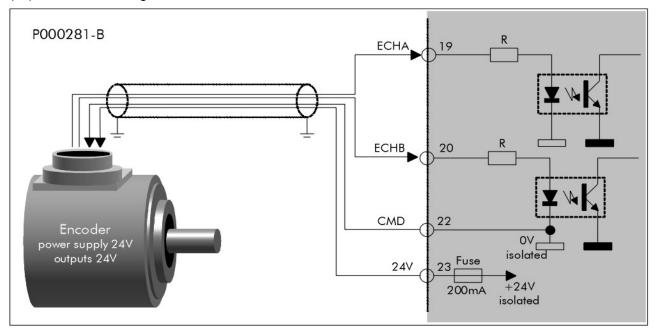


Figure 63: Connecting an incremental encoder

An incremental encoder must have PUSH-PULL outputs and must be powered at 24V directly to the inverter isolated power supply delivered to terminals +24V (23) and CMD (22). Max. allowable feeding current is 200mA and is protected by a resettable fuse.

Only encoders of that type may be connected to Sinus Penta's terminal board. Max. signal frequency is 155kHz for 1024 pls/rev at 9000 rpm. To acquire different encoder types or to acquire an encoder without engaging any multifunction input, fit option board for encoder acquisition in SLOT A.

The encoder acquired via terminal board is indicated as ENCODER A by the inverter firmware, whereas the encoder acquired via option board is indicated as ENCODER B by the inverter firmware. Therefore, two encoders may be connected to the same inverter. (See the Encoder/Frequency Inputs menu in the Sinus Penta's Programming Guide.)

Input MDI8/FINB allows acquiring a square-wave frequency signal from 10kHz to 100kHz. Then, the frequency signal will be converted into an analog value to be used as a frequency reference. Frequency values corresponding to the minimum reference and the maximum reference may be set as operating parameters.

Signals must be sent from a Push-pull, 24V output with a common reference to terminal CMD (22) (see figure below).

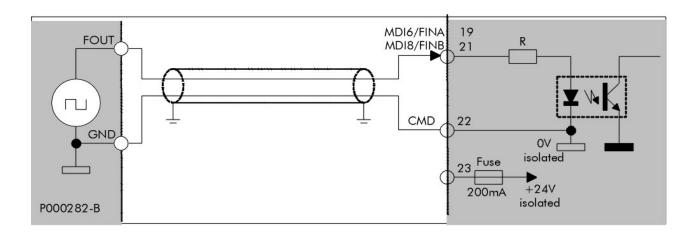


Figure 64: Signal sent from a push-pull, +24V output

3.5.4.5. Technical Sheet for Digital Inputs

Specification	Min.	Туре	Max.	Unit of m.
MDI input voltage related to CMD	-30		30	V
Voltage for logic level 1 between MDI and CMD	15	24	30	V
Voltage for logic level 0 between MDI and CMD	-30	0	5	V
Current absorbed by MDI at logic level 1	5	9	12	mA
Input frequency for "fast" inputs MDI6, MDI7, MDI8			155	kHz
Duty-cycle allowed for frequency input	30	50	70	%
Min. time period at high level for "fast" inputs MDI6, MDI7, MDI8	4.5			μS
Voltage of isolation test between CMD (22) in respect to CMA (1,9) 500Vac, 50Hz, 1		OHz, 1m	nin.	

damages to the equipment.

CAUTION

NOTE

Isolated supply output is protected by a resettable fuse capable of preventing the inverter internal power supply unit from damaging due to a short-circuit. Nevertheless, if a short-circuit occurs, the inverter could lock and stop the motor.

Avoid exceeding min. and max. input voltage values not to cause irreparable

3.5.5. Analog Inputs (Terminals 1 to 9)

The inverters of the Sinus Penta series are provided with three analog inputs, one single-ended input and two differential inputs. Analog inputs may be configured either as voltage inputs or as current inputs. AIN2 input may be used to acquire a PTC thermistor in compliance with DIN44081/DIN44082 for the motor thermal protection. In that case, up to 6 PTCs can be series-connected; functionality of the overtemperature alarm is not altered. Two reference outputs with rated values +10 V and -10 V are also available for the direct connection of a reference potentiometer.

Configuration as voltage input, current input or motor PTC input is done via the DIP-switches (see the DIP-switches section).

Five firmware acquisition modes are available (see Sinus Penta's Programming Guide) for three hardware settings as shown in the table:

Type of preset data acquisition	HW configuration for SW1	Full-scale values and notes
Unipolar 0 ÷ 10 V	Voltage input	0 ÷ 10 V
Bipolar ± 10 V	Voltage input	- 10 V ÷ + 10 V
Unipolar 0 ÷ 20 mA	Current input	0 mA ÷ 20 mA
Unipolar 4 ÷ 20 mA	Current input	4 mA ÷ 20 mA; wire disconnection alarm with current values under 2 mA
PTC acquisition	PTC input	Motor overtemperature alarm if PTC resistance exceeds threshold defined in DIN44081/DIN44082

NOTE

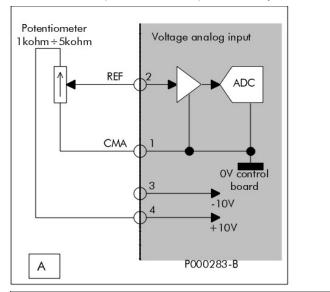
Firmware parameter setting must be consistent with DIP-switch setting. Otherwise, no predictable result is given for acquired values.

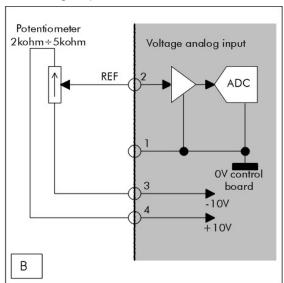
NOTE

Any voltage or current value exceeding full-scale values or dropping below min. values will generate an acquired value limited to the max. measure or the min. measure respectively.

CAUTION

Voltage inputs have high input impedance and must always be closed when active. Isolating a conductor connected to an analog input set as a voltage input will not ensure that its channel reading will be equal to zero. Zero is detected only if the input is short-circuited or wired to a low-impedance signal source. Relay contact should not series-connected to the inputs to reset the detected value.


You can adjust the relationship between the analog input set as a voltage input or a current input and the detected value by altering those parameters that regulate upper values (full-scale values) and lower values, thus adjusting the analog channel gain and offset. You can also adjust the signal filtering time constant. For any detail concerning functionality and programming of analog input parameters, see Sinus Penta's Programming Guide.



3.5.5.1. REF Single-ended Reference Input (Terminal 2)

Reference input REF (2) is assigned to the inverter speed reference (factory setting) and is a single-ended input related to terminal CMA (1).

The figure below shows wiring to a unipolar potentiometer, a bipolar potentiometer and a sensor with $4\div20\text{mA}$ current output. The REF input is factory-set as a $\pm10\text{V}$ voltage input.

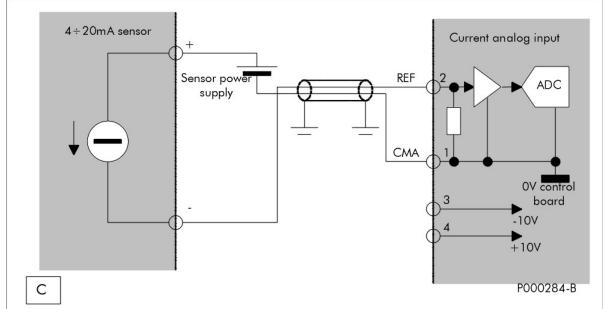


Figure 65: Potentiometer linked to the REF Input

- A) For unipolar command 0+REFMAX
- B) Potentiometer wiring for bipolar command -REFmax++REFmax
- C) 4÷20mA Sensor wiring

NOTE

Galvanic isolation exists between the common terminal of the digital inputs (CMD – terminal 22) and the common terminal of CMA analog inputs.

Do not apply +24V voltage available on terminal 23 of the control board to supply 4÷20mA analog sensors if this isolation must be maintained for noise rejection or signal integrity.

3.5.5.2. Differential Auxiliary Inputs (Terminals 5-8)

Auxiliary inputs allow auxiliary voltage and current values for signals exceeding ground signals up to a preset maximum voltage value in common mode.

A differential input weakens disturbance due to "ground potentials" occurring when the signal is sent from a source that is located far from the inverter. Disturbance is weakened only if wiring is correct.

Each input is provided with a positive terminal and a negative terminal of the differential amplifier. Both terminals must be connected to the signal source and the signal grounding respectively. Make sure that the common mode voltage between the signal source grounding and the grounding of auxiliary inputs CMA (terminal 9) does not exceed the max. allowable voltage value in common mode.

When an input is used as a current input, the differential amplifier detects the voltage value in the terminals of a drop resistance (low ohm value). The max. voltage for the negative terminal of the differential input must not exceed the voltage value in common mode (see Technical Sheet for Analog Inputs). AIN1 and AIN2 inputs are factory-set as 4(0)...20mA current inputs.

Do the following to obtain noise rejection benefits:

- provide a common path of the differential pair
- make sure that the signal source grounding does not exceed input voltage in common mode.

The typical wiring is shown below:

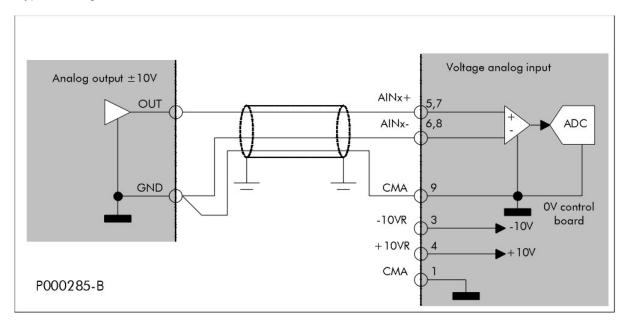


Figure 66: Wiring of a PLC analog output, axis control board, etc.

NOTE

Wiring between terminal CMA and the signal source grounding is required for proper data acquisition. Wiring may also be performed outside the shielded cable.

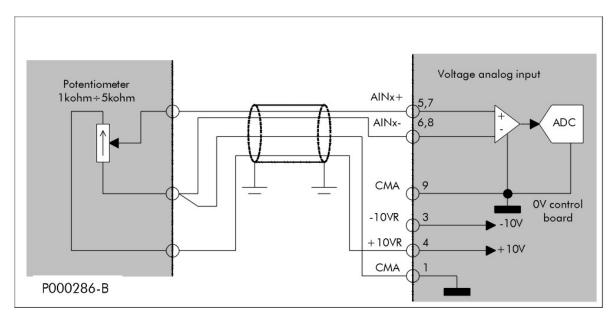


Figure 67: Wiring of unipolar remote potentiometer 0 ÷ REF max

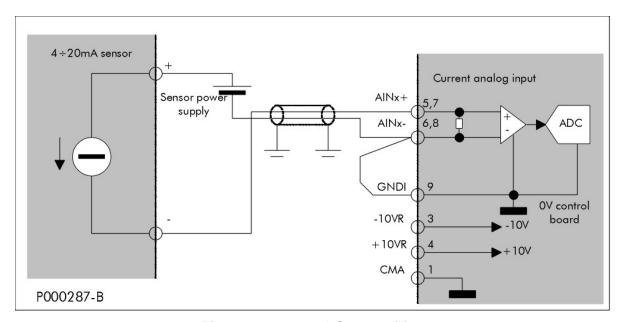


Figure 68: 4 ÷ 20 mA Sensor wiring

3.5.5.3. Motor Thermal Protection Input (PTC, Terminals 7-8)

The inverter manages the signal sent from one or more thermistors (up to 6 thermistors) incorporated in the motor windings to obtain a hardware thermal protection of the motor. The thermistor ratings must comply with IEC 34-11-2 (BS4999 Pt.111 - DIN44081/DIN44082) or to thermistors named "Mark A" in standard IEC 60947-8:

Resistor corresponding to Tnf temperature value: 1000 Ω (typical rating)

Resistor at Tnf -5° C: < 550 Ω Resistor at Tnf $+5^{\circ}$ C: > 1330 Ω

The typical resistor pattern in respect to temperature is shown in the figure below.

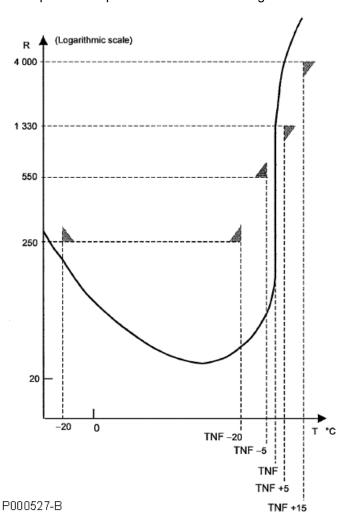


Figure 69: Standard pattern of the thermistor resistor for the motor thermal protection

Tnf temperature is the thermistor rated transient temperature to be adjusted based on the max. allowable temperature of the motor windings. The inverter sends a motor overheating alarm when it detects the thermistor resistance transient temperature of at least one of the series-connected thermistors, but does not display the real temperature of the motor windings. An alarm trips even if a short-circuit condition is detected in the thermistor circuit wiring.

NOTE

Maximum six (6) series-connected PTCs can be acquired. Motors usually have three or six series-connected PTCs, one or two per phase. If multiple sensors are series-connected, a false alarm trip may occur even when the motor is cold.

Do the following to use the thermistor:

- 1) Configure analog input AIN2/PTC by setting SW1-3: Off, SW1-4: 0n, SW1-5: On.
- 2) Connect the motor thermal protection terminals between terminals 7 and 8 in the control board.
- 3) In the Thermal Protection menu, set the motor protection method with PTC (refer to Sinus Penta's Programming Guide).

CAUTION

PTCs are located inside the motor winding coils.

Make sure that their isolating features comply with the requirements for double insulation or reinforced insulation (SELV circuit).

3.5.5.4. Technical Sheet for Analog Inputs

Specification		Type	Max.	Unit of
				m.
Input impedance in voltage configuration (REF input)	10k			Ω
Input impedance in voltage configuration (differential inputs AIN1, AIN2)		80k		Ω
Input impedance in current configuration		250		Ω
Offset cumulative error and gain in respect to full-scale value			0.25	%
Temperature coefficient of gain error and offset			200	ppm/°C
Digital resolution in voltage mode			12	bit
Digital resolution in current mode			11	bit
Value of voltage LSB		4.88		mV
Value of current LSB		9.8		μΑ
Max. voltage of differential input common mode	– 7		+7	V
Rejection ratio for differential input common mode at 50Hz	50			dB
Persistent overload with no damaging in voltage mode	-50		50	V
Persistent overload with no damaging in current mode	-23		23	mA
Input filter cut frequency (first prevailing order) over REF		230		Hz
Input filter cut frequency (first prevailing order) over AIN1, AIN2		500		Hz
Sampling time (1)	0.6		1.2	ms
Max. current of resistance measure in PTC acquisition mode			2.2	mA
Resistive trip threshold for PTC protection	3300	3600	3930	Ω
Resistive trip threshold for PTC protection deactivation	1390	1500	1620	Ω
Resistive trip threshold for PTC short-circuit		20		Ω
Tolerance of reference output voltage +10 VR, -10 VR	•	•	0.8	%
Current absorbed by reference outputs			10	mA

Note: (1) depending on the switching time period set for the connected motor

CAUTION

Avoid exceeding min. and max. input voltage values not to cause irreparable damages to the equipment.

NOTE

Reference outputs are electronically protected against temporary short-circuits. After wiring the inverter, make sure that the output voltage is correct, as a persistent short-circuit may damage the equipment.

3.5.6. Digital Outputs (Terminals 24 to 34)

The Sinus Penta is provided with four digital outputs: one push-pull output, one open-collector output and two relay outputs. All outputs are opto-isolated; the push-pull output and the open-collector output are isolated by an optoisolator; relay outputs are isolated by their relays. Each output has a common terminal segregated from the others, thus allowing connecting it to different devices without creating any ground loop.

3.5.6.1. Push-Pull Output MDO1 and Wiring Diagrams (Terminals 24 to 26)

Push-Pull MDO1 output (terminal 25) may also be used as a frequency output thanks to its powerful passband. Below you will find the wiring diagrams relating to the control of PNP/NPN loads and the cascade-connection of multiple inverters through frequency output and input.

Because supply line and common terminal of output MDO1 are isolated, you can use both 24V supply and auxiliary supply (24V or 48V).

Output MDO1 is active (positive voltage related to CMDO1) when it is controlled by the load control (symbol displayed next to output MDO1, parameter M056). As a result, a load connected as a PNP output and powered between output MDO1 and common CMDO1 will activate, whereas a load connected as a NPN output between supply line +VMDO1 and output MDO1 will deactivate.

Cascade connection frequency output \rightarrow frequency input from a master inverter to a slave inverter allows a high-resolution transfer (up to 16 bits) of a reference between the two inverters. This also provides disturbance immunity because data are digitally transferred and the control board grounding is galvanically isolated.

A single master inverter may also control several slave inverters. To do so, use a shielded cable to perform a star connection (a wire for each slave inverter will come from the output frequency).

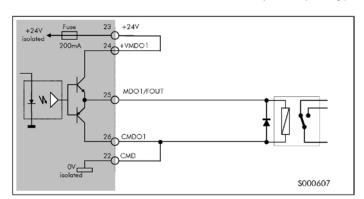


Figure 70: MDO1 output wiring as PNP for relay control with internal power supply

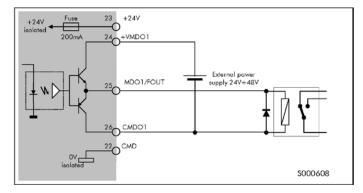


Figure 71: MDO1 output wiring as PNP for relay control with external power supply

CAUTION

Always use a freewheeling diode for inductive loads (e.g. relay coils). Diode wiring is shown in the figure.

NOTE

Connect either isolated inverter supply or auxiliary supply to power the output.

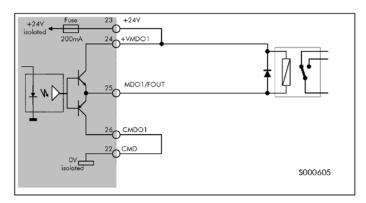


Figure 72: MDO1 output wiring as NPN for relay control with internal power supply

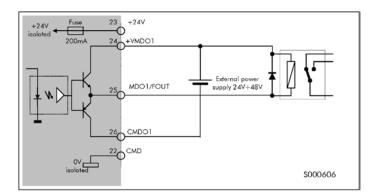


Figure 73: MDO1 output wiring as NPN for relay control with external power supply

CAUTION

Always use a freewheeling diode for inductive loads (e.g. relay coils). Diode wiring is shown in the figure.

NOTE

Connect either isolated inverter supply or auxiliary supply to power the output.

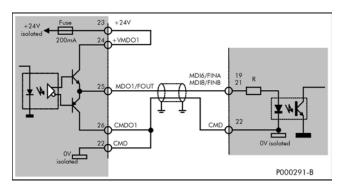


Figure 74: Cascade connection: FOUT frequency output → FINA or FINB frequency input

3.5.6.2. Open-collector MDO2 Output and Wiring Diagrams (Terminals 27-28)

Multifunction output MDO2 (terminal 27) is provided with common terminal CMDO2 (terminal 28), which is galvanically isolated from the other outputs. Output MDO2 may be used for PNP and NPN connected loads (see wiring diagrams below).

Similarly to a closed contact, electrical conductibility is to be found on open-collector output between terminal MDO2 and terminal CMDO2 when OC output is active, i.e. when symbol ■ is displayed for output MDO2 (parameter M056). Both PNP and NPN connected loads are activated.

Power supply may result from the inverter isolated supply or from an auxiliary source (24V or 48V).

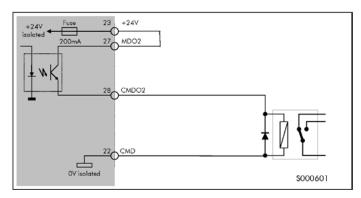


Figure 75: MDO2 output wiring as PNP for relay control with internal power supply

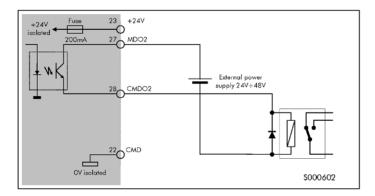


Figure 76: MDO2 output wiring as PNP for relay control with external power supply

CAUTION

Always use a freewheeling diode for inductive loads (e.g. relay coils). Diode wiring is shown in the figure.

NOTE

Connect either isolated inverter supply or auxiliary supply to feed the output.

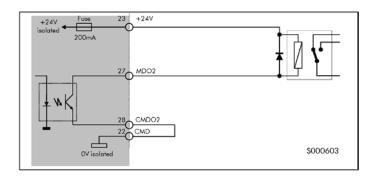


Figure 77: MDO2 output wiring as NPN for relay control with internal power supply

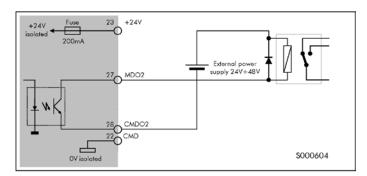


Figure 78: MDO2 output wiring as NPN for relay control with external power supply

CAUTION

Always use a freewheeling diode for inductive loads (e.g. relay coils). Diode wiring is shown in the figure.

NOTE

Connect either isolated inverter supply or auxiliary supply to feed the output.

3.5.6.3. Relay Outputs (Terminals 29..34)

Two relay outputs are available with potential-free change-over contacts. Each output is equipped with three terminals: a normally closed (NC) terminal, a common terminal (C), and a normally open terminal (NO). Relays may be configured as MDO3 and MDO4 outputs. When outputs MDO3 and MDO4 are active (symbol displayed for MDO1, measure parameter M056), close the normally open contact and the common contact and open the normally closed contact.

CAUTION

Contacts may shut off up to 250VAC. Do not touch the terminal board or the control board circuits to avoid electric shock hazard when voltage exceeds 50VAC or 120VDC.

CAUTION

Never exceed max. voltage and max. current values allowed by relay contacts (see relay specifications).

CAUTION

Use freewheeling diode for DC voltage inductive loads. Use antidisturbance filters for AC inductive loads.

NOTE

Like any multifunction output, relay outputs may be configured based on a comparison to an analog value (see Sinus Penta's Programming Guide). In that case, particularly if enabling delay time is set to zero, relays will cyclically energize/de-energize and this will strongly affect their durability. We suggest that output MDO1 or MDO2 be used, which is not affected by repeated energizing/de-energizing.

SINUS PENTA

3.5.6.4. Technical Sheet for Digital Outputs

Specification	Min.	Туре	Max.	Unit of m.
Voltage range for MDO1 and MDO2 outputs	20	24	50	V
Max. current to be switched for outputs MDO1 and MDO2			50	mA
Voltage drop for output MDO1 (based on deactivated CMDO1 or based on activated +VMDO1)			3	٧
Voltage drop for activated MDO2 output			2	V
Current leakage for deactivated MDO2 output			4	μΑ
Duty-cycle for MDO1 output used as a frequency output at 100kHz	40	50	60	%
Isolation test voltage between CMDO1 (26) and CMDO2 (27) based on GNDR (1) and GNDI (9)	500Vac, 50Hz, 1min.			
Voltage and current limit for relay contacts MDO3, MDO4		50Vac)Vdc		
Residual resistance with closed contact for outputs MDO3 and MDO4			30	mΩ
Durability of relay contacts MDO3 and MDO4 from a mechanical and electrical point of view		5x10 ⁷ /10 ⁵		oper.
Max. allowable frequency for relay outputs MDO3 and MDO4			30	oper./s

CAUTION

Avoid exceeding min. and max. input voltage values not to cause irreparable damages to the equipment.

NOTE

Digital outputs MDO1 and MDO2 are protected against transient short-circuits by a resettable fuse. After wiring the inverter, make sure that the output voltage is correct, as a persistent short-circuit may damage the equipment.

NOTE

Isolated supply output is protected by a resettable fuse capable of preventing the inverter internal power supply unit from damaging due to a short-circuit. Nevertheless, if a short-circuit occurs, the inverter could lock and stop the motor.

3.5.7. Analog Outputs (Terminals 10 to 13)

Three analog outputs are available: AO1 (terminal 10), AO2 (terminal 11) and AO3 (terminal 12), related to common terminal CMA (terminal 13). They can be set as voltage outputs or current outputs.

Each analog output is controlled by a DAC (digital to analog converter), that can be configured in order to output—as analog signals—three measured values chosen among the available values for each application (see Sinus Penta's Programming Guide).

The operating mode, gain, offset and filtering time constant (if any) may be defined by the user. The inverter firmware allows four operating modes that must match with the setup of the configuration DIP-switches (see Sinus Penta's Programming Guide).

Type of acquisition set for the inverter parameters	Hardware configuration for SW2	Full-scale value and notes
±10 V	Voltage output	-10V ÷ +10V
0 ÷ 10 V	Voltage output	0÷10V
0 ÷ 20 mA	Current output	0mA ÷ 20mA
4 ÷ 20 mA	Current output	4mA ÷ 20mA

CAUTION

Never deliver input voltage to analog outputs. Do not exceed max. allowable current.

3.5.7.1. Technical Sheet for Analog Outputs

Specification	Min.	Type	Max.	Unit of
				m.
Load impedance with voltage outputs	2000			Ω
Load impedance with current outputs			500	Ω
Max. capacitive load to be connected to voltage outputs			10	nF
Offset cumulative error and typical gain related to full-scale value			1.5	%
Temperature coefficient of gain error and offset			300	ppm/°C
Digital resolution in voltage configuration			11	bit
Digital resolution in current configuration			10	bit
Value of voltage LSB		11.1		mV
Value of current LSB		22.2		μΑ
Stabilization time within 2% of the final value		1.11		ms
Time period of output activation		500		μS

NOTE

Analog outputs configured as voltage outputs are controlled by operational amplifiers that are subject to fluctuations. Do not install filter capacitors on analog output supply mains. If noise is detected at the system input connected to the analog outputs, switch to current output mode.

3.6. Operating and Remoting the Keypad

For the parameter programming and view a display/keypad is located on the front part of the Sinus Penta drives. The display/keypad is fitted on the drive front part; press the side tabs to remove the display/keypad. For more details, see the Remoting the Display/Keypad section below.

3.6.1. Indicator LEDs on the Display/Keypad

Eleven LEDs are located on the keypad, along with a 4-line, 16-character LCD display, a buzzer and 12 function keys. The display shows parameter values, diagnostic messages and the quantities processed by the inverter.

For any detail concerning menus and submenus, parameter programming, measurement selection and messages displayed, please refer to the Sinus Penta's Programming Guide.

The figure below shows the location of the indicator LEDs and their functionality.

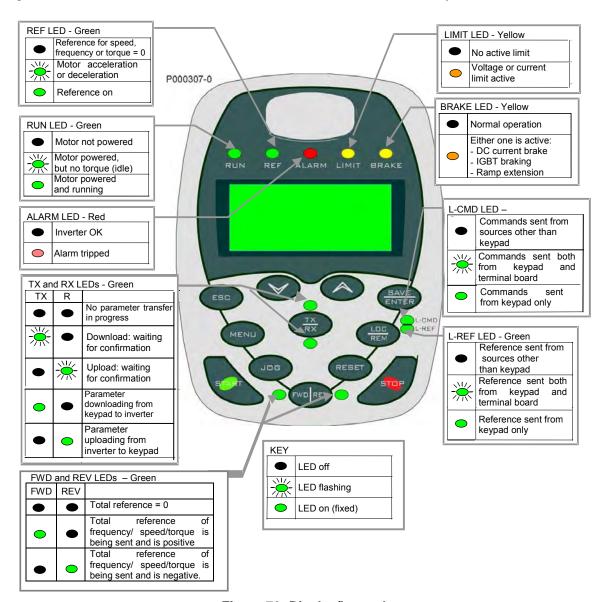


Figure 79: Display/keypad

3.6.2. Function Keys

The table below details the display/keypad function keys:

Key	Functions
ESC	Quits menus and sub-menus and confirms a new parameter value (when the editing mode is activated, the cursor starts flashing), which is not saved to non-volatile memory (the value is lost when the inverter is turned off). If the Operator mode is set up and the keypad is locked on the Keypad page, press ESC for at least 5 s to restart navigation.
A	Down arrow; scrolls through the menus and submenus, the pages in a submenu or the parameters in descending order. While programming, it decrements the parameter value. Hold it down along with the increment key \wedge to access the next menu.
	Up arrow; scrolls through the menus and submenus, the pages in a submenu or the parameters in ascending order. While programming, it increments the parameter value.
SAVE_ENTER	Accesses menus and submenus. In programming mode (cursor flashing) this key saves to non-volatile memory (EEPROM) the value of the parameter being altered. This prevents any parameter modification from being cleared in case of mains loss. If pressed when the Keypad page is displayed, the SAVE/ENTER key allows displaying the "Keypad Help" page, where the variables viewed in the previous page are detailed.
MENU	If pressed more than once, it scrolls through the menus: start page → access page for parameter alteration → ID SW page → keypad → start page, and so on.
TX RX	Enters the pages for the parameter DOWNLOAD from the keypad to the inverter (TX) or allows parameter UPLOAD from the inverter to the keypad (RX); if pressed more than once, the TX RX key allows selecting either operating mode. The active selection is highlighted by the page displayed; the relevant TX or RX LED starts flashing. To confirm Upload/Download, press the Save/Enter key when the wanted selection is active.
LOC	If pressed once, reference and commands are forced via keypad; press it again to return to the prior configuration or to change the active reference in the Keypad page depending on the preset type of Keypad page (see the Display menu in the Sinus Penta's Programming Guide).
RESET	Resets the alarm tripped once the cause responsible for the alarm has disappeared. Press it for 8 seconds to reset the control board, thus allowing the microprocessors to be reinitialized and to activate R parameters with no need to shut off the inverter.
START	If enabled, it starts the motor (at least one of the command sources is represented by the keypad).
STOP	If enabled, it stops the motor (at least one of the command sources is represented by the keypad).
JOG	The Jog key is active only when at least one of the command sources is represented by the keypad; if depressed, it enters the Jog reference set in the relevant parameter.
FWD REV	If enabled (at least one of the command sources is represented by the keypad), it reverses the sign of the overall reference. Press this key again to change the reference sign.

NOTE

Parameter increment or decrement (flashing cursor) is immediately effective or is enabled after quitting the programming mode (fixed cursor) depending on the parameter type. Numeric parameters activate as soon as they are altered; alphanumeric parameters activate after quitting the programming mode. Please refer to the Sinus Penta's Programming Guide for any detail.

3.6.3. Setting the Operating Mode

The display/keypad allows selecting two different configuration modes. To do so, press the SAVE | ENTER key for a few seconds, or press TX | RX + SAVE | ENTER for a few seconds.

If the SAVE key is pressed, only the LCD contrast may be adjusted; press TX | RX + SAVE to adjust the display contrast, enable or disable the buzzer and turn on/off the display backlight.

3.6.3.1. Adjusting the Display Contrast

Press the SAVE | ENTER key for more than 5 seconds; *** TUNING *** is displayed; the indicator LEDs come on and configure as a 5-dot bar extending proportionally to the contrast value set. Press or to adjust the display contrast. Press SAVE | ENTER for at least 2 seconds to store the new contrast setting.

3.6.3.2. Adjusting the Display Contrast, Back-light and Buzzer

Press TX | RX + SAVE | ENTER for more than 5 seconds. Press \checkmark or \land to scroll through seven parameters relating to the display/keypad. Press \checkmark or \land to decrement or increment the parameter value. Press SAVE | ENTER to store the new parameter value to non-volatile memory. The different parameters and their description are detailed in the table below.

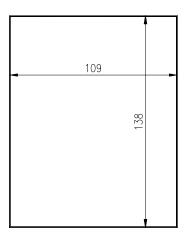
Parameter	Possible values	Description		
SW Version	-	VERSION OF THE FIRMWARE IMPLEMENTED IN THE DISPLAY/KEYPAD (CANNOT BE MODIFIED)		
Language		Inactive parameter (please refer to the Programming Guide to set a new dialog language)		
Baudrate	4800 9600 19200 38400	Baudrate in bps between the Penta and the display/keypad		
Contrast value	nnn	Numeric value of the contrast register ranging from 0 (low) to 255 (high)		
Buzzer	KEY	Buzzer beeps whenever a key is pressed		
	REM	Buzzer controlled by the inverter (Inactive function)		
	OFF	Buzzer always off		
Back-light	ON	LCD back-light always on		
	REM	LCD back-light controlled by the inverter (Inactive function)		
	OFF	LCD back-light always off		
Address	0	Imposes scanning the addresses of multidrop inverters connected to the		
		display/keypad		
	1÷247	MODBUS address of the inverter: allows selecting an inverter among		
		multidrop inverters connected to one display/keypad		

Once new parameter values are set, press the SAVE | ENTER key for more than two seconds to return to the inverter ordinary operation.

3.6.4. Remoting the Display/Keypad

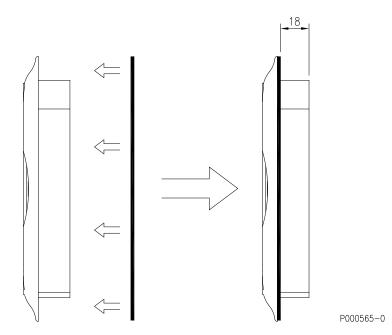
The REMOTING KIT is required to remote the keypad. The remoting kit includes:

- Plastic shell
- Keypad mounting plate
- Fastening brackets
- Remoting wire (length: 5 m)

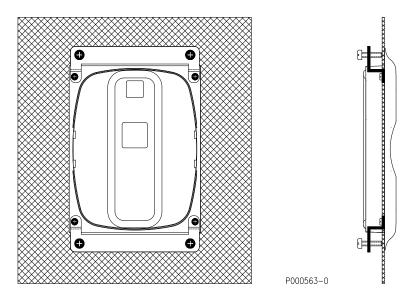


NOTE

The cable length can be 3m or 5m (state cable length when ordering the equipment).


Do the following:

1 – Pierce the holes as shown in the figure (template 138 x109 mm).


P000564-0

2 – Apply the self-adhesive mounting plate on the rear part of the plastic shell between the shell and the cabinet; make sure that holes coincide.

- 3 Fit the plastic shell in the relevant slot.
- 4 Fasten the plastic shell using the brackets supplied and tighten the fastening screws. Four self-threaded screws are supplied to fasten the brackets to the mounting plate; four fastening screws are also supplied to fix the shell to the panel.

5 – Remove the display/keypad from the inverter (Figure 80). A short wire with 8-pole telephone connectors is used to connect the display/keypad to the inverter. Press the cable tab to disconnect it.

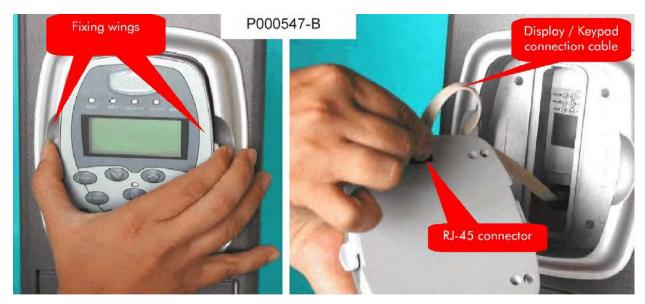


Figure 80: Removing the display/keypad module

6 – Connect the keypad to the inverter using the wire supplied. On the keypad side, the wire is provided with a telephone connector and a loop lug connected to the wire shielding braiding. Fasten the loop to the panel grounding using one of the mounting jig fastening screws. Tighten the screw in an uncoated area of the panel, to ensure it is electrically connected to the ground. Panel grounding must comply with the safety regulations in force.

7 – Fit the display/keypad to its housing (side tabs snap); make sure that the telephone connector is connected both to the keypad and to the inverter. Avoid stretching the keypad wire.

The remoting kit ensures degree of protection IP54 for the front panel.

P000562-0

Figure 81: Front/rear view of the display/keypad and its shell.

CAUTION

Never connect and disconnect the keypad when the inverter is on. Temporary overload may lock the inverter due to alarm trip.

CAUTION

Only use wires supplied by Elettronica Santerno for the keypad wiring. Wires with a different contactor arrangement will cause irreparable damages to the inverter and the display/keypad. A remoting wire with different specifications may cause disturbance and affect communications between the inverter and the display/keypad.

CAUTION

Properly connect the remoting wire by grounding its braiding as explained above. The remoting wire must not be parallel-connected to the power wires connecting the motor or feeding the inverter.

This will reduce disturbance between the inverter and the display/keypad connection to a minimum.

3.6.5. Using the Display/Keypad for Parameter Transfer

The display/keypad can be used for parameter transfer between two inverters. Do the following to transfer parameters from an inverter to the display/keypad: connect the display keypad to inverter #2 and download parameters from the display/keypad to the inverter. Follow the instructions given in section 3.6.4 to fit/remove the display/keypad from the inverter. More details are given in the Sinus Penta's Programming Guide.

CAUTION

Never connect and disconnect the keypad when the inverter is on. Temporary overload may lock the inverter due to alarm trip.

CAUTION

Only use wires supplied by Elettronica Santerno for the keypad wiring. Wires with a different contactor arrangement will cause irreparable damages to the inverter and the display/keypad. A remoting wire with different specifications may cause disturbance and affect communications between the inverter and the display/keypad.

3.7. Serial Communications

3.7.1. General Features

The inverters of the Sinus Penta series may be connected to peripheral devices through a serial link; this enables both reading and writing of all parameters normally accessed through the display/keypad. Two-wire RS485 is used, which ensures a better immunity to disturbance even on long cable paths, thus limiting communication errors.

The inverter will typically behave as a slave device (i.e. it only answers to queries sent by another device); a master device (typically a computer) is then needed to start serial communication. The inverter may be connected directly to a computer or a multidrop network of inverters controlled by a master computer (see Figure 82 below).

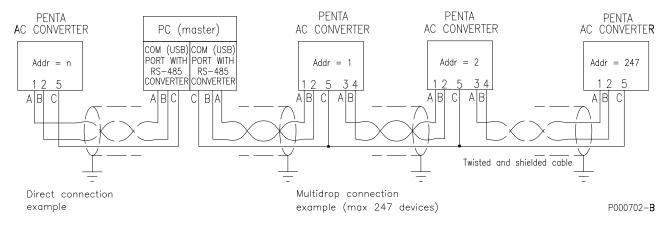


Figure 82: Example of multidrop and direct connection

The Sinus Penta is supplied with a connector which is equipped with 2 pins for each signal of the RS485 pair, thus allowing easier multidrop links with no need to connect two conductors to the same pin, and thus avoiding creating a star network, which is not recommended for this type of bus.

Any information sent to/from the inverter through the display/keypad unit may be obtained also via serial link using the RemoteDrive software offered by Elettronica Santerno. The RemoteDrive allows the following functions: image acquisition, keypad simulation, oscilloscope functions and multifunction tester, table compiler including operation data log, parameter setup and data reception-transmission-storage from and to a computer, scan function for the automatic detection of the connected inverters (up to 247 inverters may be connected). Please refer to Remote Drive DRIVE REMOTE CONTROL - User Manual for the inverters of the Sinus PENTA series manufactured by Elettronica Santerno.

The inverter is provided with two serial communication ports. The basic port (Serial Link 0, see Programming Guide) is provided with a male D-connector described in the wiring section above; the second port (Serial Link 1, see Programming Guide), which is provided with RJ-45 connector, is used for the connection of the display/keypad. When the display/keypad is not used, a master MODBUS device (such as a computer where the RemoteDrive is installed) can be connected to Serial Link 1 port through a DB9-RJ45 adaptor (see also Remoting a Keypad Controlling Multiple Inverters).

3.7.2. Direct Connection

Electrical standard RS485 may be connected directly to the computer if this is provided with a special port of this type. In case your computer is provided with a serial port RS232-C or a USB port, a RS232-C/ RS485 converter or a USB/RS485 converter is required.

Elettronica Santerno may supply both converters as optional components.

Logic "1" (normally called a MARK) means that terminal TX/RX A is positive in respect to terminal TX/RX B (vice versa for logic "0", normally called a SPACE).

3.7.3. Multidrop Network Connection

Sinus Penta inverters may be connected to a network through electrical standard RS485, allowing a bus-type control of each device; up to 247 inverters may be interconnected depending on the link length and baud rate

Each inverter has its own identification number, which can be set in the Serial Network menu as a unique code in the network connected to the PC.

3.7.3.1. Connection

For the connection to serial link 0 use the 9-pole, male D connector located on the control board (sizes S05..S15) or on the inverter bottom besides the terminal board (sizes $\geq S20$). The D connector pins are the following.

PIN	FUNCTION
1 – 3	(TX/RX A) Differential input/output A (bidirectional) according to standard RS485. Positive polarity in respect to pins 2 – 4 for one MARK. Signal D1 according to MODBUS-IDA association.
2 – 4	(TX/RX B) Differential input/output B (bidirectional) according to standard RS485. Negative polarity in respect to pins 1 – 3 for one MARK. Signal D0 according to MODBUS-IDA association.
5	(GND) control board zero volt. Common according to MODBUS-IDA association.
6	(VTEST) Auxiliary supply input – (see Auxiliary Power Supply)
7 – 8	not connected
9	+ 5 V, max 100 mA for power supply of optional RS485/RS232 converter

The D-connector metal frame is connected to the grounding. Wire duplex cable braiding to the metal frame of the female connector to be connected to the inverter. To avoid obtaining a too high common voltage for driver RS485 of the master or the multidrop-connected devices, connect together terminals GND (if any) for all devices. This ensures equipotentiality for all signal circuits, thus providing the best operating conditions for drivers RS485; however, if devices are connected to each other with analog interfaces, this can create ground loops. If disturbance occurs when communication interfaces and analog interface operate at a time, use optional, galvanically isolated RS485 communications interface.

Otherwise, serial link 1 can be connected through RJ-45 connector. Pins of RJ-45 connector are the following:

PIN	FUNCTION
1-2-4	+ 5 V, max. 100mA for the power supply of external optional RS485/RS232 converter.
3	(TX/RX B) Differential input/output B (bidirectional) according to standard RS485. Negative polarity in respect to pins 1 – 3 for one MARK. Signal D1 according to MODBUS-IDA association.
5	(TX/RX A) Differential input/output A (bidirectional) according to standard RS485. Positive polarity in respect to pins 2 – 4 for one MARK. Signal D1 according to MODBUS-IDA association.
6-7-8	(GND) control board zero volt. Common according to MODBUS-IDA association.

The pin lay-out of RJ-45 connector is shown in the figure below:

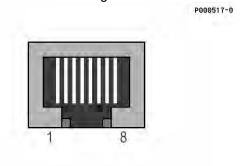


Figure 83: Pin lay-out of serial link 1 connector

MODBUS-IDA association (<u>www.modbus.org</u>) defines the type of wiring for MODBUS communications via serial link RS485 as a "2-wire cable". The following specifications are recommended:

Type of cable	Shielded cable composed of balanced D1/D0 pair + common conductor
	("Common")
Min. cross-section of	AWG24 corresponding to 0.25mm ² . For long cable length, larger cross-
conductors	sections up to 0.75mm ² are recommended.
Max. length	500 metres (based on the max. distance between two stations)
Characteristic impedance	Better if exceeding 100Ω (120Ω is typically recommended)
Standard colours	Yellow/brown for D1/D0 pair, grey for "Common" signal

The figure below shows the reference wiring diagram recommended from MODBUS-IDA association for the connection of "2-wire" devices:

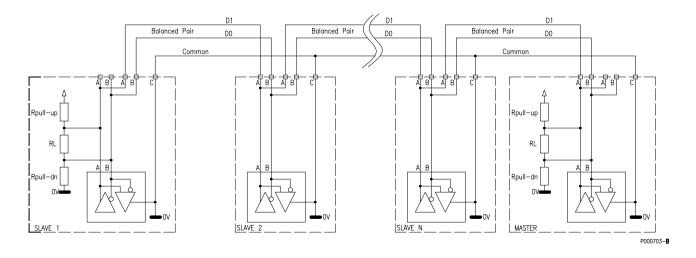


Figure 84: Recommended wiring diagram for "2-wire" MODBUS connection

Note that the network comprising the termination resistor and the polarization resistors is integrated into the inverter and can be activated via appropriate DIP-switches. Figure 84 shows the termination network in the devices at both ends of the chain. The terminator must be inserted in those devices only.

SINUS PENTA

NOTE

Four-pair data transfer cables of Category 5 are normally used for serial links. Although their usage is not recommended, cables of Category 5 can be used for short cable paths. Note that the colours of such cables are different from the colours defined by MODBUS-IDA association. One pair is used for D1/D0 signals, one pair is used as a "Common" conductor, while the remaining two pairs must not be connected to any other device, or must be connected to the "Common".

NOTE

All devices connected to the communication multidrop network should be grounded to the same conductor to minimize any difference of ground potentials between devices that can affect communication.

NOTE

The common terminal for the supply of the inverter control board is isolated from grounding. If one or multiple inverters are connected to a communication device with a grounded common (typically a computer), a low-impedance path between control boards and grounding occurs. High-frequency disturbance could come from the inverter power components and interfere with the communication device operation.

If this happens, provide the communication device with a galvanically isolated interface, type RS485/RS232.

3.7.3.2. Line Terminators

Provide a linear wiring (not a star wiring) for multidrop line RS485. To do so, two pins for each line signal are provided on the inverter connector. The incoming line may be connected to pins 1 and 2, whereas the outgoing line may be connected to pins 3 and 4.

The first device in the multidrop connection will have only one outgoing line, while the last device will have only one incoming line. The line terminator is to be installed on the first device and the last device. In serial link 0, the terminator is selected through DIP-switch SW3 in the control board (see DIP-switches section) for Sinus Penta inverters.

The line master (computer) is typically placed at the beginning or at the end of a multidrop connection; in that case, the line terminator of the farthest inverter from the master computer (or the only inverter in case of direct connection to the master computer) shall be enabled: DIP-switch SW3, selector switches 1 and 2 in position ON.

The line terminator of the other inverters in intermediate positions shall be disabled: DIP-switch SW3, selector switches 1 and 2 in position OFF.

NOTE

Communication does not take place or is adversely affected if multidrop terminators are not properly set, especially in case of a high baud rate. If more than two terminators are fitted, some drivers can enter the protection mode due to thermal overload, thus stopping dialoguing with some of the connected devices.

CAUTION

The line terminator in serial link 1, which is available on the keypad connector, is always ON and cannot be disabled. This avoids any multidrop connection of multiple inverters. A multidrop network can be used for point-to-point communications with the master computer or for the first/last inverter in a multidrop chain. If a multidrop network is connected to serial link 1 port, communications will not take place and the network-connected devices will be damaged by the large resistive load of the parallel-connected terminator resistors.

3.7.4. How to Use Isolated Serial Board ES822 (Optional)

ES822 option board allows the connection to a serial link RS485 or RS232. ES822 board, to be installed inside the inverter, allows the inverter to be connected both to a computer through RS232—with no need to use additional devices—and to serial link RS485. Board ES822 also provides galvanic isolation between the serial link and the control board grounding of the inverter, thus avoiding ground loops and enhancing immunity to disturbance of the serial link. For more details, see ES822 Isolated Serial Board (Slot B).

The activation of ES822 results in the automatic switching of serial link 0, which is electrically suppressed from the standard serial connector of the inverter.

3.7.5. The Software

The serial communication protocol is MODBUS RTU standard.

Parameters are queried as they are read using the keys and the display. Parameter alteration is also managed along with the display/keypad. Note that the inverter will always consider the latest value set either via serial link or by the inverter.

The terminal board inputs may be controlled via the terminal board or the serial link, depending on the condition of the relevant parameters (see Sinus Penta's Programming Guide).

However, the ENABLE-A and ENABLE-B commands are always to be sent via terminal board regardless of the inverter programming mode.

3.7.6. Serial Communications Ratings

Baud rate:	configurable between 1200 and 38,400 bps (default value: 38,400 bps)
Data format:	8 bits
Start bit:	1
Parity: (1)	NO, EVEN, ODD
Stop bit:	2,1
Protocol:	MODBUS RTU
Supported functions:	03 h (Read Holding Registers)
	10 h (Preset Multiple Registers)
Device address:	configurable between 1 and 247 (default value: 1)
Electric standard:	RS485
Inverter response delay:	configurable between 0 and 1000 ms (default value: 5 ms)
End of message timeout:	configurable between 0 and 10,000 ms (default value: 0 ms)
Communications Watch Dog: (2)	configurable between 0 and 65,000 s (default value: disabled)

- (1) Ignored when receiving
- (2) If set up, an alarm trips if no legal message is sent within the timeout period.

NOTE

For the parameters relating to the configuration of the serial communications, see Sinus Penta's Programming Guide.

3.8. Auxiliary Power Supply

The VTEST auxiliary supply pin is located on the connector of serial port 0. If 9VDC voltage (in respect to GND) is delivered to the VTEST input, the inverter control board activates, as well as the keypad and the option boards (if any). This mode is very useful when you need to:

- 1) read and write the inverter parameters with no need to apply AC 3-phase supply;
- 2) keep "ON" the control board, the keypad and the option boards in case of AC 3-phase supply loss (backup functionality).

When auxiliary supply is applied and no AC 3-phase supply is delivered, the alarms relating to the power section are disabled and the motor cannot be started up.

The auxiliary supply input features are the following:

Features	Min.	Туре	Max.	Unit of m.
Auxiliary supply voltage	7.5	9	12	VDC
Absorbed current		1.1	1.8	Α
"Inrush" current at power on			3	Α

CAUTION

The power supply unit voltage and current delivery capacity must meet the requirements of the test supply. Lower ratings than the supply test can cause the control board failure and the irreparable loss of the user-defined parameters. On the other hand, higher ratings can cause irreparable damage to the inverter control board. Switching power supply units installed in the control board are characterized by strong "inrush" current at power on. Make sure that the power supply unit being used is capable of delivering such current ratings.

Elettronica Santerno provides a suitable power supply unit as an option; see I/O Expansion Board 120/240Vac ES988 (SLOT C).

4. START UP

CAUTION

Make sure that the safety procedures are observed. See SAFETY STATEMENTS.

CAUTION

In particular, make sure that all installation instructions are observed. See Installing and Operating the Equipment.

CAUTION

If the STO function integrated into the drive is to be used, follow the instructions given in the Safe Torque Off Function - Application Manual.

The detailed start up procedures for IFD, VTC and FOC asynchronous motor control are given in the Programming Guide.

This section covers the basic startup procedures for IFD, VTC, FOC asynchronous motor control configurations.

Any detail concerning startup procedures of the devices configured as "RGN" (regenerative inverter) is given in the Guide to the Regenerative Application.

Any detail concerning startup procedures of the devices configured as "SYN" (application for synchronous motors) is given in the Guide to the Synchronous Motor Application.

For more details on the equipment functionality, please consult Sinus Penta's Programming Guide.

DANGER

Before changing the equipment connections, shut off the inverter and wait at least 20 minutes to allow for the discharge of the heat sinks in the DC-link.

DANGER

At startup, if the connected motor rotates in the wrong direction, send a low frequency reference in IFD mode and check to see if the direction of rotation is correct. In respect to its shaft, the motor normally rotates clockwise if the connection sequence is U, V, W and if a positive reference is set (FWD). Contact the motor manufacturer to check the preset direction of rotation of the motor.

CAUTION

When an alarm message is displayed, find the cause responsible for the alarm trip before restarting the equipment.

5. TECHNICAL SPECIFICATIONS

Earthing system

TN-S, TN-C, TN-CS, TT (not corner earthed) • VAC supply voltage/tolerance systems

For IT (ungrounded) systems please contact 4T → 380÷500 Vac, 3phase, -15% +10% Elettronica Santerno

Power Range

 kW connected motor/voltage range 200÷240Vac, 3phase 1.5~260kW 2.2~1750kW 380÷415Vac, 3phase 3~2000kW 440÷460Vac, 3phase 3.7~2100kW 480÷500Vac, 3phase 3~2500kW 525÷575Vac, 3phase 3~3000kW 660÷690Vac, 3phase

• Degree of protection/size

IP00 from Size S41 to Size S90.

IP54 from Size S05 to Size S32

BOX: IP54

CABINET: IP24 and IP54.

Overvoltage category

III (refer to EN 61800-5-1)

MTBF

25,000 hours at 40°C and rated output current.

Specifications for motor wiring

 Motor voltage range/precision 0÷Vmains, ÷2%

Current/torque to motor/time

105÷200% for 2 min. every 20 min. up to S30. 105÷200% for 1 min. every 10 min. from S32.

- · Starting torque/max. time 240% for a short time
- Output frequency/resolution (*) 0÷1000 Hz, resolution 0.01 Hz
- Braking torque:

DC braking 30%*Cn

Braking while decelerating up to 20%*Cn (with no • Vibrations braking resistor)

Braking while decelerating up to 150%*Cn (with • Installation environment braking resistors)

Carrier Frequency Setting section and the Sinus in salty environments. Penta's Programming Guide.

Mains

 $2T \rightarrow 200 \div 240 \text{ Vac}$, 3phase, -15% + 10%

 $5T \rightarrow 500 \div 600 \text{ Vac}$, 3phase, -15% + 10%

 $6T \rightarrow 575 \div 690 \text{ Vac}$, 3phase, -15% + 10%

Maximum voltage imbalance: ±3% of the rated supply voltage

(Class 3 according to CEI EN 61000-2-4).

VDC supply voltage/tolerance

 $2T \rightarrow 280 \div 340 \text{ Vdc}, -15\% +10\%$

 $4T \rightarrow 530 \div 705 \ Vdc, -15\% \ +10\%$

 $5T \rightarrow 705 \div 845 \text{ Vdc}, -15\% + 10\%$

 $6T \rightarrow 815 \div 970 \text{ Vdc}, -15\% + 10\%$

STAND ALONE: IP20 from Size S05 to Size S32, The DC voltage power supply for size S41, S42, S51, S52, S60, S60P, S64, S74 and S84 requires an external precharge circuit of the DC bus capacitors.

> Supply frequency (Hz)/tolerance 50÷60Hz, ±20%

Environmental Requirements

Ambient temperature

-10°C to +55°C

It might be necessary to apply 2% derating of the rated current for every degree beyond the stated temperatures depending on the inverter model and application category (see Temperatures Based On Application Category).

- Storage temperature
- -25 ÷ +70°C
- Humidity

5 ÷ 95% (non-condensing)

Altitude

Max. altitude for installation 2000 m a.s.l. For installation above 2000 m and up to 4000 m, please contact Elettronica Santerno.

Above 1000 m, derate the rated current by 1% every 100 m.

Lower than 9.8 m/sec^2 (= 1.0G)

Do not install in direct sunlight and in places · Carrier frequency with adjustable silent random exposed to conductive dust, corrosive gases, modulation (for more details, please refer to the vibrations, water sprinkling or dripping; do not install

- · Operating atmospheric pressure
- 86 ÷ 106 kPa
- Cooling system

Forced air-cooling

NOTE (*)

The maximum output frequency is limited in respect to the preset carrier frequency (for more details, please refer to the Programming Guide).

			IFD = Voltage/Frequency with symmetrical PWM modulation
	Moto	or control methods	VTC = Vector Torque Control (Sensorless vector direct torque control)
			FOC = Field adjustment with field regulation and torque for asynchronous motors
&	Eroo	juency / speed setting	SYN = Vector for permanent magnet synchronous motors (PMSM) Digital reference: 0.1 Hz (IFD control); 1 rpm (VTC control); 0.01 rpm (FOC control)
l ₽		luency / speed setting	12-bit Analog reference: 4096 in respect to speed range
Ō	1630	idion	Open loop: ±0.5% of max. speed
2	Spe	ed precision at constant rpm	Closed loop (when using an encoder): < 0.01% of max. speed
0			Open loop: <6% of rated torque
<u> </u>	Torc	ue accuracy	Closed loop (when using an encoder): <4% of the rated torque
≥	Ove	rload capacity	Up to 2 times rated current for 120 sec.
	Star	ting torque	Up to 200% Cn for 120 secs and 240% Cn for a short duration
	Torc	ue boost	Programmable for a rated torque increase
		Operation method	Operation via terminal board, keypad, MODBUS RTU serial interface, field bus interface
			3 analog inputs to be configured as voltage/current inputs:
	signals	Reference analog inputs /	- 1 single-ended input, max. resolution 12 bits
	guŝ	auxiliary inputs	- 2 differential inputs, max resolution 12 bits Analog quantities from keypad, serial interface, field bus
	S.		7 configurable digital inputs; 2 preset inputs for the Safe Torque Off function (ENABLE-
	Input	Digital inputs	A, ENABLE-B)
_	⊑	Maritima	15 sets of programmable speed values ±32,000 rpm; first 3 sets with resolution 0.01
Ō		Multispeed	rpm (FOC control)
OPERATION		Ramps	4 + 4 accel./decel. ramps, 0 to 6,500 secs; possibility to set user-defined patterns.
K			4 configurable digital outputs with possibility to set internal timers for
<u>F</u>			activation/deactivation delay:
"	als	Digital outputs	1 push-pull output, 20÷48 Vdc, 50 mA max.
	signals		1 open collector, NPN/PNP output, 5÷48 Vdc, 50 mA max 2 relay outputs with change-over contacts, 250 Vac, 30 Vdc, 5A
	t s	Auxiliary voltage	24 Vdc ±5%, 200 mA
	Output	Reference voltage for	
	ō	potentiometer	-10 Vdc ± 0.8%, 10 mA
		Analog outputs	3 configurable analog outputs, -10 ÷ 10 Vdc, 0 ÷ 10 Vdc, 0(4) ÷ 20 mA, resolution 9/11
		Analog outputs	bits
6			Inverter thermal protection, motor thermal protection, mains failure, overvoltage,
Ž			undervoltage, overcurrent at constant speed or ground failure, overcurrent while
	Alan	ms	accelerating, overcurrent while decelerating, overcurrent during speed search (IFD and VTC SW only), auxiliary trip from digital input, serial communication failure, control
			board failure, precharge circuit failure, inverter overload conditions for long duration,
6			unconnected motor, encoder (if any) failure, overspeed.
PROTECTIONS	War	ning	INVERTER OK, INVERTER ALARM, acceleration – constant rpm – deceleration,
	vval	iiiig	current/torque limiting, POWER DOWN, SPEED SEARCHING, DC braking, autotune.
7			Frequency/torque/speed reference, output frequency, motor speed, torque demand,
UNICATION	0.5	rating data	generated torque, current to motor, voltage to motor, DC bus voltage, motor-absorbed
l ¥≻	Ope	rating data	power, digital input condition, digital output condition, trip log (last 5 alarms), operating time, auxiliary analog input value, PID reference, PID feedback, PID error value, PID
UNICA.			regulator output, PID feedback with programmable multiplying factor.
SP		1.0.1	Standard incorporated RS485 multidrop 247 drops
COMMU	Seria	al link	MODBUS RTU communication protocol
Ö	E:-1	J In	Profibus-DP®, PROFIdrive®, DeviceNet®, CANopen®, Ethernet (MODBUS® TCP/IP).
	Field bus		Metasys® N2, BACnet® with option boards.
SAFETY F	SAFETY REQUIREMENTS		EN 61800-5-1, STO function according to EN 61800-5-2 SIL 3, EN ISO 13849 PL d
PERFORMANCE AND FUNCTIONALITY			EN 61800-2 and EN 60146-1-1
Compliance			C E c UL) us EAL NISO 1334-1 104 150 154 154 154 154 154 154 154 154 154 154
L			

5.1. Choosing the Product

The inverters of the Sinus Penta series are dimensioned based on the application allowable current and overload.

The Sinus Penta series is characterized by 3 current values:

- **Inom** is the continuous current that can be delivered;
- **Imax** is the max. current that can be delivered under overload conditions for a time period of 120s every 20 min or for a time period of 60s every 10 min based on the different inverter models;
- **Ipeak** is the maximum current that can be delivered under overload conditions for a time period of 3s.

Each inverter model may be connected to different motor power sizes depending on load performance. Four types of torque/current overloads are available:

Overload	Up	to	Applicability
Overload	(60/120s)	(3s)	Applicability
LIGHT 120% 144%		1/1/0/	Light loads with constant/quadratic torque
LIGHT	12070	144 70	(pumps, fans, etc.);
STANDARD 140%		168%	Standard loads with constant torque
STANDARD	140%	100%	(conveyors, mixers, extruders, etc.);
HEAVY	175%	210%	Heavy loads with constant torque
IILAVI	17570	21070	(lifts, presses, bridge cranes, mills, etc.);
STRONG 200% 240% Ve		240%	Very heavy loads with constant torque
STRONG	200%	240%	(spindles, axis control, etc.).

The table below indicates the overload class typically required for each application.

Dimensioning is not binding: the torque model required by the duty cycle of the connected of

Dimensioning is not binding; the torque model required by the duty cycle of the connected product should be known.

Application		OVER	RLOAD	
	LIGHT	STANDARD	HEAVY	STRONG
Atomizer, bottle washer, screw compressor (no-load), damped axial fan, undamped axial fan, centrifugal damped fan, undamped centrifugal fan, high-pressure fan, bore pumps, centrifugal pumps, positive displacement pumps, dust collector, grinder, etc.	*			
Slurry pump,	*	*		
Agitator, centrifuge, piston compressor (no-load), screw compressor (loaded), roller conveyor, cone crusher, rotary crusher, vertical impact crusher, debarker, edger, hydraulic power pack, mixer, rotary table, sanding machine, bandsaw, disk saw, separator, shredder, chopper, twister/spinner, industrial washer, palletizer, extruder, etc.		*		
Conveyor belt, drier, slicer, tumbler, mechanical press, forming machine, shears, winding/unwinding machine, drawplate, calender, screw injection moulding machine, etc.		*	*	
Piston compressor (loaded), conveyor screw, crusher jaw, mill, ball mill, hammer mill, roller mill, planer, pulper, vibrating screen, hoist and crane displacement, loom, etc.			*	
Mandrel, axis control, lifting application, hydraulic power pack injection press, etc.			*	*

The tables contained in the following pages state the power of the motors to be connected to Sinus Penta inverters based on their overload classes.

NOTE

Data contained in the tables below relate to standard 4-pole motors.

MAKE SURE THAT:

- The rated current of the connected motor is lower than Inom (tolerance: +5%).
- If multiple motors are controlled by one drive, the sum of their rated current values must not exceed Inom.
- The ratio between the inverter maximum current and the rated motor current is included in the overload class required.

SINUS PENTA

EXAMPLE:

Application: Bridge crane Motor used: 37kW

Rated current: 68A
Rated voltage: 400V
Required overload: 160%

Heavy application

Inverter ratings:

Inom: at least 68A

Imax: at least 68A x 1.6=102A

According to the table, Sinus Penta 0060 providing Inom=88A and Imax=112A is to be used for this type of application.

FIRE HAZARD When multiple motors are connected, it can happen that the inverter does not detect whether a motor enters a stall condition or exceeds power ratings. In that case, motors can be seriously damaged and fire hazard exists.

Always provide a failure detection system for each motor, independent of the inverter, in order to lock all motors when failures occur.

5.1.1. LIGHT Applications: Overload up to 120% (60/120s) or up to 144% (3s)

5.1.1.1. Technical Sheet for 2T and 4T Voltage Classes

					A	pplic	able	Motor	Pow	er					I	lpeak
Size	Sinus Penta Mode	1 200	-240\	/ac	380)-415\	/ac	440-	-460V	ac	480	-500V	ac	Inom	ımax	(3s)
		kW	HP	Α	kW	HP	Α	kW	HP	Α	kW	HP	Α	Α	Α	Α
	SINUS 0005	-	-	-	4.5	6	9.0	5.5	7.5	9.7	6.5	9	10.2	10.5	11.5	14
	SINUS 0007	3	4	11.2	5.5	7.5	11.2	7.5	10	12.5	7.5	10	11.8	12.5	13.5	16
	SINUS 0008	3.7	5	13.2	-	-	-	-	-	-	-	-	-	15	16	19
	SINUS 0009	-	-	-	7.5	10	14.5	9.2	12.5	16	9.2	12.5	14.3	16.5	17.5	19
S05	SINUS 0010	4	5.5	14.6	-	-	-	-	-	-	-	-	-	17	19	23
	SINUS 0011	-	-	-	7.5	10	14.8	9.2	12.5	16	11	15	16.5	16.5	21	25
	SINUS 0013	4.5	6	15.7	-	-	-	-	-	-	-	-	-	19	21	25
	SINUS 0014	-	-	-	7.5	10	14.8	9.2	12.5	16	11	15	16.5	16.5	25	30
	SINUS 0015	5.5	7.5	19.5	-	-		-	-	-	•	-	-	23	25	30
	SINUS 0016	7.5	10	25.7	-	-	-	-	-	-	•	-	-	27	30	36
	SINUS 0020	9.2	12.5	30	-	-		-	-	-	-	-	-	30	36	43
	SINUS 0016	-	-	-	11	15	21	15	20	25	15	20	23.2	27	30	36
	SINUS 0017	-	-	-	15	20	29	18.5	25	30	18.5	25	28	30	32	37
	SINUS 0020	-	-	-	15	20	29	18.5	25	30	18.5	25	28	30	36	43
	SINUS 0023	11	15	36	•	•	-	-	-	i	ı	•		38	42	51
S12	SINUS 0025	-	-	-	22	30	41	22	30	36	22	30	33	41	48	58
312	SINUS 0030	-	-	-	22	30	41	22	30	36	25	35	37	41	56	67
	SINUS 0033	15	20	50	-	-	-	-	-	-	-	-	-	51	56	68
	SINUS 0034	-	-	-	30	40	55	30	40	48	37	50	53	57	63	76
	SINUS 0036	-	-	-	30	40	55	37	50	58	37	50	53	60	72	86
	SINUS 0037	18.5	25	61	-	-	-	-	-	-	-	-	-	65	72	83
S15	SINUS 0040	22	30	71	37	50	67	45	60	70	50	70	70	72	80	88
0.0	SINUS 0049	25	35	80	45	60	80	50	65	75	55	75	78	80	96	115
	SINUS 0060	28	38	88	50	70	87	55	75	85	65	90	88	88	112	134
S20	SINUS 0067	30	40	96	55	75	98	65	90	100	75	100	103	103	118	142
020	SINUS 0074	37	50	117	65	90	114	75	100	116	85	115	120	120	144	173
	SINUS 0086	45	60	135	75	100	133	90	125	135	90	125	127	135	155	186
	SINUS 0113	55	75	170	100	135	180	110	150	166	132	180	180	180	200	240
S30	SINUS 0129	65	90	195	110	150	191	125	170	192	140	190	195	195	215	258
330	SINUS 0150	70	95	213	120	165	212	132	180	198	150	200	211	215	270	324
	SINUS 0162	75	100	231	132	180	228	150	200	230	175	238	240	240	290	324

(continued)

	SINUS	0180	90	125	277	160	220	273	200	270	297	220	300	300	300	340	408
S41	SINUS	0202	110	150	332	200	270	341	220	300	326	250	340	337	345	420	504
341	SINUS	0217	120	165	375	220	300	375	250	340	366	260	350	359	375	460	552
	SINUS	0260	132	180	390	250	340	421	280	380	410	300	410	418	425	560	672
	SINUS	0313	160	220	475	280	380	480	315	430	459	355	485	471	480	600	720
S51	SINUS	0367	185	250	550	315	430	528	375	510	540	400	550	544	550	680	792
	SINUS	0402	200	270	593	400	550	680	450	610	665	500	680	673	680	850	1020
S60	SINUS	0457	220	300	649	400	550	680	450	610	665	500	680	673	720	880	1056
360	SINUS	0524	260	350	780	450	610	765	500	680	731	560	760	751	800	960	1152
S60P	SINUS	0598P	-	-	•	500	680	841	560	760	817	630	860	864	900	1100	1152
	SINUS	0598	-		-	500	680	841	560	760	817	630	860	864	900	1100	1320
S65 ¹⁾	SINUS	0748	•	•	1	560	760	939	630	860	939	710	970	960	1000	1300	1560
	SINUS	0831	-	-	•	710	970	1200	800	1090	1160	900	1230	1184	1200	1440	1728
	SINUS	0964	-	-	-	900	1230	1480	1000	1360	1431	1100	1500	1480	1480	1780	2136
S75 ¹⁾	SINUS	1130	-	-	-	1000	1360	1646	1170	1600	1700	1270	1730	1700	1700	2040	2448
	SINUS	1296	-	-	•	1200	1650	2050	1400	1830	2000	1460	1990	2050	2100	2520	3024
S90 ¹⁾	SINUS	1800	-	-	•	1500	2000	2500	1750	2400	2500	1850	2500	2500	2600	3100	3720
390	SINUS	2076	-	•	1	1750	2400	2900	2000	2720	2900	2100	2900	2900	3000	3600	4000
Inver	ter supply	380-500Vac; 530-705Vdc.															
		1) Inp	ut inc	ducto	r and	d outp	ut ind	uctor	requir	ed.							

5.1.1.2. Technical Sheet for 2T and 4T Voltage Classes – Parallel-connected Models

	Sinus Penta Model					Α	pplica	ble M	otor P	ower					lnam	lmax
Size			200-240Vac			380	380-415Vac			440-460Vac			-500Va	C	Inom	IIIIax
			kW	HP	Α	kW	HP	Α	kW	HP	Α	kW	HP	Α	Α	Α
S43 (2xS41)	SINUS	0523	260	350	780	450	610	765	500	680	731	560	760	751	800	960
CEO	SINUS	0599	-	-	-	500	680	841	560	760	817	630	860	864	900	1100
S53 (2xS51)	SINUS	0749	-	-	-	560	760	939	630	860	939	710	970	960	1000	1300
(2331)	SINUS	0832	-	-	-	710	970	1200	800	1090	1160	900	1230	1184	1200	1440
CEE	SINUS	0850	-	-	-	800	1090	1334	900	1230	1287	1000	1360	1317	1340	1600
S55 (3xS51)	SINUS	0965	-	-	-	900	1230	1480	1000	1360	1431	1100	1500	1480	1480	1780
(38331)	SINUS	1129	•	•	-	1000	1360	1646	1170	1600	1700	1270	1730	1700	1700	2040
Invorte	200-240Vac;						380-500Vac;									
mverte	Inverter Power Supply			-340Vc	dc.		530-705Vdc.									
	See	User Ma	nual S	INUS	PEN	TA - Par	allel-co	nnect	ed Mo	dels S4	1S	52				

Key:

Inom = continuous rated current of the inverter

Imax = max. current produced by the inverter for 120 seconds every 20 min up to S30, and for 60 seconds every 10 min for S41 and greater

5.1.1.3. Technical Sheet for 5T and 6T Voltage Classes

				Арр	licable	Motor Pov	wer		ln c ==	Ima ass	lpeak
Size	Sinus Pen	ta Model		575Vac		660	-690Vac		inom	lmax	(3s)
			kW	HP	Α	kW	HP	Α	Α	Α	Α
	SINUS	0003	4	5.5	5.7	5.5	7.5	6.3	7	8.5	10
040 57	SINUS	0004	5.5	7.5	7.6	7.5	10	8.4	9	11	13
S12 5T S14	SINUS	0006	7.5	10	10	9.2	12.5	10.2	11	13.5	16
314	SINUS	0012	9.2	12.5	12.5	11	15	12.1	13	16	19
	SINUS	0018	11	15	14	15	20	16.8	17	21	25
	SINUS	0019	15	20	20	18.5	25	21	21	25	30
	SINUS	0021	18.5	25	25	22	30	23	25	30	36
S14	SINUS	0022	22	30	28	30	40	33	33	40	48
	SINUS	0024	30	40	39	37	50	39	40	48	58
	SINUS	0032	37	50	47	45	60	46	52	63	76
	SINUS	0042	45	60	55	55	75	56	60	72	86
	SINUS	0051	55	75	70	75	100	78	80	96	115
S22	SINUS	0062	65	90	83	75	100	78	85	110	132
	SINUS	0069	75	100	95	90	125	94	105	135	162
	SINUS	0076	90	125	115	110	150	113	125	165	198
000	SINUS	0088	110	150	138	132	180	133	150	200	240
S32	SINUS	0131	132	180	168	160	220	158	190	250	300
	SINUS	0164	160	220	198	220	300	220	230	300	360
	SINUS	0181	220	300	275	250	340	250	305	380	420
0.40	SINUS	0201	250	340	300	315	430	310	330	420	420
S42	SINUS	0218	300	410	358	355	485	350	360	465	560
	SINUS	0259	330	450	395	400	550	390	400	560	560
	SINUS	0290	355	485	420	450	610	440	450	600	720
	SINUS	0314	400	550	480	500	680	480	500	665	798
S52	SINUS	0368	450	610	532	560	770	544	560	720	850
	SINUS	0401	560	770	630	630	860	626	640	850	850
	SINUS	0457	630	860	720	710	970	696	720	880	1056
S65 1)	SINUS	0524	710	970	800	800	1090	773	800	960	1152
565 /	SINUS	0598	800	1090	900	900	1230	858	900	1100	1320
	SINUS	0748	900	1230	1000	1000	1360	954	1000	1300	1440
S70 ¹⁾	SINUS	0831	1000	1360	1145	1240	1690	1200	1200	1440	1440
075 1)	SINUS	0964	1270	1730	1480	1530	2090	1480	1480	1780	2136
S75 1)	SINUS	1130	1460	1990	1700	1750	2380	1700	1700	2040	2448
S80 ¹⁾	SINUS	1296	1750	2380	2100	2100	2860	2100	2100	2520	2520
	SINUS	1800	2000	2720	2400	2400	3300	2400	2600	3100	3600
S90 ¹⁾	SINUS	2076	2500	3400	3000	3000	4000	3000	3000	3600	3600
Inverter	supply vol	tage	5(7(00-600Va 05-845Vd	lc.	575 815					
	1) Inpu	ut inductor	and ou	and output inductor required.							

5.1.1.4. Technical Sheet for 5T and 6T Voltage Classes – Parallel-connected Models

				Ap	plicable	Motor Pow	er		Inom	Imax
Size	Sinus Pen	ta Model		575Vac		66	0-690Vac		Inom	lmax
			kW	HP	Α	kW	HP	Α	Α	Α
S44 (2xS42)	SINUS	0459	630	860	720	710	970	696	720	880
	SINUS	0526	710	970	800	800	1090	773	800	960
S54	SINUS	0600	800	1090	900	900	1230	858	900	1100
(2xS52)	SINUS	0750	900	1230	1000	1000	1360	954	1000	1300
	SINUS	0828	1000	1360	1145	1240	1690	1200	1200	1440
S56	SINUS	0960	1270	1730	1480	1530	2090	1480	1480	1780
(3xS52)	SINUS	1128	1460	1990	1700	1750	2380	1700	1700	2040
Inverter	Supply Volta	age		00-600Va 05-845Vd	•		5-690Vac; 5-970Vdc.			
Se	e User Manua	al SINUS PE	ENTA - P	arallel-cor	nected N	lodels S41	.S52			

5.1.2. STANDARD Applications: Overload up to 140% (60/120s) or up to 168% (3s)

5.1.2.1. Technical Sheet for 2T and 4T Voltage Classes

	0:	Danta				Ap	plicab	le Mo	tor Po	wer							
Size	Sinus I Mod		200)-240V	ас	380)-415Va	ас	440-	460V	ас	480	-500V	ac	Inom	lmax	lpeak (3 s.)
	11100	101	kW	HP	Α	kW	HP	Α	kW	HP	Α	kW	HP	Α			(0 3.)
	SINUS	0005	-	-	-	4	5.5	8.4	4.5	6	7.8	5.5	7.5	9.0	10.5	11.5	14
	SINUS	0007	2.2	3	8.5	4.5	6	9.0	5.5	7.5	9.7	6.5	9	10.2	12.5	13.5	16
	SINUS	8000	3	4	11.2	•	•	-	•	•	-	•	•	-	15	16	19
	SINUS	0009	-	•	-	5.5	7.5	11.2	7.5	10	12.5	7.5	10	11.8	16.5	17.5	19
	SINUS	0010	3.7	5	13.2	-	•	-	-	-	-	ı	•	-	17	19	23
S05	SINUS	0011	ı	•	-	7.5	10	14.8	9.2	12.5	15.6	9.2	12.5	14.3	16.5	21	25
	SINUS	0013	4	5.5	14.6	•	•	-	-	-	1	•	-	-	19	21	25
	SINUS	0014	-	-	-	7.5	10	14.8	9.2	12.5	15.6	11	15	16.5	16.5	25	30
	SINUS	0015	4.5	6	15.7	-	-	-	-	-	-	•	-	-	23	25	30
	SINUS	0016	5.5	7.5	19.5	-	-	-	-	-	-	-	-	-	27	30	36
	SINUS	0020	7.5	10	25.7	-	-	-	-	-	-	-	-	-	30	36	43
	SINUS	0016	-	-	-	9.2	12.5	17.9	11	15	18.3	15	20	23.2	27	30	36
	SINUS	0017	-	-	-	11	15	21	11	15	18.3	15	20	23.2	30	32	37
	SINUS	0020	-	-	-	15	20	29	15	20	25	18.5	25	28	30	36	43
	SINUS	0023	9.2	12.5	30	-	-	-	-	-	-	-	-	-	38	42	51
040	SINUS	0025	•	•	-	18.5	25	35	18.5	25	30	22	30	33	41	48	58
S12	SINUS	0030	•	•	-	22	30	41	22	30	36	25	35	37	41	56	67
	SINUS	0033	11	15	36	-	-	-	-	-	-	-	-	-	51	56	68
	SINUS	0034	-	-	-	25	35	46	30	40	48	30	40	44	57	63	76
	SINUS	0036	-	-	-	30	40	55	30	40	48	37	50	53	60	72	86
	SINUS	0037	15	20	50	-	-	-	-	-	-	-	-	-	65	72	83
S15	SINUS	0040	18.5	25	61	30	40	55	37	50	58	40	55	58	72	80	88
313	SINUS	0049	22	30	71	37	50	67	45	60	70	45	60	64	80	96	115
	SINUS	0060	25	35	80	45	60	80	55	75	85	55	75	78	88	112	134
S20	SINUS	0067	30	40	96	55	75	98	60	80	91	65	90	88	103	118	142
320	SINUS	0074	37	50	117	65	90	114	70	95	107	75	100	103	120	144	173
	SINUS	0086	40	55	127	75	100	133	75	100	116	85	115	120	135	155	186
	SINUS	0113	45	60	135	90	125	159	90	125	135	90	125	127	180	200	240
S30	SINUS	0129	55	75	170	100	135	180	110	150	166	110	150	153	195	215	258
330	SINUS	0150	65	90	195	110	150	191	132	180	198	150	200	211	215	270	324
	SINUS	0162	75	100	231	132	180	228	150	200	230	160	220	218	240	290	324

SINUS PENTA

(continued)

	SINUS	0180	80	110	250	160	220	273	185	250	279	200	270	273	300	340	408
644	SINUS	0202	90	125	277	200	270	341	220	300	326	250	340	337	345	420	504
S41	SINUS	0217	110	150	332	220	300	375	250	340	375	260	350	359	375	460	552
	SINUS	0260	132	180	390	250	340	421	280	380	410	300	410	418	425	560	672
	SINUS	0313	150	200	458	280	380	480	315	430	459	355	485	471	480	600	720
S51	SINUS	0367	160	220	475	315	430	528	375	510	540	400	550	544	550	680	792
	SINUS	0402	185	250	550	400	550	680	450	610	665	500	680	673	680	850	1020
560	SINUS	0457	220	300	661	400	550	680	450	610	665	500	680	673	720	880	1056
S60	SINUS	0524	260	350	780	450	610	765	500	680	731	560	770	751	800	960	1152
S60P	SINUS	0598P	-	•	-	500	680	841	560	864	900	1100	1152				
	SINUS	0598	•	•	-	500	680	841	864	900	1100	1320					
S65 ¹⁾	SINUS	0748	-	-	-	560	760	939	630	860	939	710	970	960	1000	1300	1560
	SINUS	0831	-	-	-	630	860	1080	800	1090	1160	800	1090	1067	1200	1440	1728
	SINUS	0964	-	•	-	800	1090	1334	900	1230	1287	1000	1360	1317	1480	1780	2136
S75 1)	SINUS	1130	•	•	1	900	1230	1480	1100	1500	1630	1170	1600	1570	1700	2040	2448
	SINUS	1296	•	•	-	1200	1650	2050	1400	1830	2000	1460	1990	2050	2100	2520	3024
S90 1)	SINUS	1800	-	-	-	1400	1910	2400	1700	2300	2400	1750	2400	2400	2600	3100	3720
390	SINUS	2076	•	•	1	1750	2400	2900	2000	2720	2900	2100	2900	2900	3000	3600	4000
Inve	SINUS 2076 - - 1750 2400 2900 2000 2720 2900 2100 2900																
			1) Inp	out ind	uctor	and ou	tput ind	uctor	require	ed.							

5.1.2.2. Technical Sheet for 2T and 4T Voltage Classes – Parallel-connected Models

	0:	Danta					Applic	able	Motor	Power					Inam	lmay
Size	Sinus Mo		200-	240V	ac /	380-	-415Va	С	440	-460Va	ac	480	-500V	ac	Inom	lmax
			kW	HP	Α	kW	HP	Α	kW	HP	Α	kW	HP	Α	Α	Α
S43 (2xS41)	SINUS	0523	260	350	780	450	610	765	500	680	731	560	770	751	800	960
050	SINUS	0599	-	-	-	500	680	841	560	760	817	630	860	864	900	1100
S53 (2xS51)	SINUS	0749	•	-	-	560	760	939	630	860	939	710	970	960	1000	1300
(23331)	SINUS	0832	-	-	-	630	860	1080	800	1090	1160	800	1090	1067	1200	1440
S55	SINUS	0850	-	-	-	710	970	1200	800	1090	1160	900	1230	1184	1340	1600
335 (3xS51)	SINUS	0965	•	-	-	800	1090	1334	900	1230	1287	1000	1360	1317	1480	1780
(38331)	SINUS	1129	•	•	-	900	1230	1480	1100	1500	1630	1170	1600	1570	1700	2040
Inverte	er supply	voltage	200-2 280-3		,					500Va 705Vd	•					
	See	User Ma	nual S	SINUS	S PEI	NTA - P	arallel-	conn	ected M	1odels	S41S	552				

Kev.

Inom = continuous rated current of the inverter

Imax = max. current produced by the inverter for 120s every 20 min up to S30, for 60s every 10 min for S41 and greater

5.1.2.3. Technical Sheet for 5T and 6T Voltage Classes

	Sinus	Donto		App	olicable M	otor Powe	er				Incol
Size	Mod			575Vac		66	60-690Va	С	Inom	lmax	lpeak (3 s.)
	IVIO	a C i	kW	HP	Α	kW	HP	Α	1		(3 3.)
	SINUS	0003	4	5.5	5.7	4	5.5	4.8	7	8.5	10
040.57	SINUS	0004	5.5	7.5	7.6	5.5	7.5	6.3	9	11	13
S12 5T	SINUS	0006	7.5	10	10	7.5	10	8.4	11	13.5	16
S14	SINUS	0012	7.5	10	10	9.2	12.5	10.2	13	16	19
	SINUS	0018	11	15	14	11	15	12.1	17	21	25
	SINUS	0019	11	15	14	15	20	16.8	21	25	30
	SINUS	0021	15	20	20	18.5	25	21	25	30	36
S14	SINUS	0022	22	30	28	22	30	23	33	40	48
	SINUS	0024	25	35	32	30	40	33	40	48	58
	SINUS	0032	37	50	47	37	50	39	52	63	76
	SINUS	0042	45	60	55	45	60	46	60	72	86
COO	SINUS	0051	55	75	70	55	75	56	80	96	115
S22	SINUS	0062	65	90	83	75	100	77	85	110	132
	SINUS	0069	75	100	95	90	125	95	105	135	162
	SINUS	0076	90	125	115	110	150	113	125	165	198
000	SINUS	8800	110	150	135	132	180	133	150	200	240
S32	SINUS	0131	132	180	168	160	220	158	190	250	300
	SINUS	0164	160	220	198	200	270	198	230	300	360
	SINUS	0181	220	300	275	250	340	250	305	380	420
040	SINUS	0201	250	340	300	315	430	310	330	420	420
S42	SINUS	0218	300	410	358	315	430	310	360	465	560
	SINUS	0259	330	450	395	400	550	390	400	560	560
	SINUS	0290	355	485	420	450	610	440	450	600	720
050	SINUS	0314	400	550	480	450	610	440	500	665	798
S52	SINUS	0368	450	610	532	500	680	480	560	720	850
	SINUS	0401	450	610	532	630	860	626	640	850	850
	SINUS	0457	560	770	630	630	860	626	720	880	1056
S65 1)	SINUS	0524	630	860	720	710	970	696	800	960	1152
303	SINUS	0598	710	970	800	900	1230	858	900	1100	1320
	SINUS	0748	900	1230	1000	1000	1360	954	1000	1300	1440
S70 ¹⁾	SINUS	0831	1000	1360	1145	1100	1500	1086	1200	1440	1440
S75 1)	SINUS	0964	1180	1610	1369	1410	1920	1369	1480	1780	2136
3/5 ′	SINUS	1130	1350	1840	1569	1620	2210	1569	1700	2040	2448
S80 1)	SINUS	1296	1750	2380	2100	1850	2520	1800	2100	2520	2520
	SINUS	1800	2000	2720	2400	2400	3300	2400	2600	3100	3600
S90 1)	SINUS	2076	2500	3400	3000	3000	4000	3000	3000	3600	3600
Inve	erter sup			00-600Va			′5-690Va				
	voltage	i <i>y</i>		05-845Vd	•		5-970Vd	•			
		1) Inp	ut inductor						1		

Key:

Inom = continuous rated current of the inverter

Imax = max. current produced by the inverter for 60 seconds every 10 min

5.1.2.1. Technical Sheet for 5T and 6T Voltage Classes – Parallel-connected Models

				App	licable	Motor Po	wer		Inam	Imax
Size	Sinus Pen	nta Model		575Vac		660	0-690Vac		linoin	lmax
			kW	HP	Α	kW	HP	Α	Α	Α
S44 (2xS42)	SINUS	0459	560	770	630	630	860	626	720	880
	SINUS	0526	630	860	720	710	970	696	800	960
S54	SINUS	0600	710	970	800	900	1230	858	900	1100
(2xS52)	SINUS	0750	900	1230	1000	1000	1360	954	1000	1300
	SINUS	0828	1000	1360	1145	1100	1500	1086	1200	1440
S56	SINUS	0960	1180	1610	1369	1410	1920	1369	1480	1780
(3xS52)	SINUS	1128	1350	1840	1569	1620	2210	1569	1700	2040
Inverte	r supply vol	tage		00-600Va 05-845Vc	•		i-690Vac; i-970Vdc			
See U	Iser Manual	SINUS PE	NTA - F	Parallel-co	onnecte	d Models S	S41S52		1	

Key:

Inom = continuous rated current of the inverter

Imax = max. current produced by the inverter for 60 seconds every 10 min

5.1.3. HEAVY Applications: Overload up to 175% (60/120s) or up to 210% (3s)

5.1.3.1. Technical Sheet for 2T and 4T Voltage Classes

	0: 5					Ap	plica	ble l	Motor	Powe	er						
Size	Sinus P Mod		200	-240V	ac	380	-415V	ас	440	-460V	ас	480	-500V	ас	Inom	Imax	lpeak (3 s.)
	Wiod	Ci	kW	HP	Α	kW	HP	Α	kW	HP	Α	kW	HP	Α			(5 5.)
	SINUS	0005	-	-	-	3	4	6.4	3.7	5	6.6	4.5	6	7.2	10.5	11.5	14
	SINUS	0007	1.8	2.5	7.3	4	5.5	8.4	4.5	6	7.8	5.5	7.5	9.0	12.5	13.5	16
	SINUS	8000	2.2	3	8.5	-	-	-	-	-	-	-	-	-	15	16	19
	SINUS	0009	-	-	-	4.5	6	9.0	5.5	7.5	9.7	7.5	10	11.8	16.5	17.5	19
	SINUS	0010	3	4	11.2	-	-	-	-	-	-	-	-	-	17	19	23
S05	SINUS	0011	-	-	-	5.5	7.5	11.2	7.5	10	12.5	9.2	12.5	14.3	16.5	21	25
	SINUS	0013	3.7	5	13.2	-	-	-	•	•	-	-	-	-	19	21	25
	SINUS	0014	-	-	-	7.5	10	14.8	9.2	12.5	15.6	11	15	16.5	16.5	25	30
	SINUS	0015	4	5.5	14.6	-	-	-	-	-	-	-	-	-	23	25	30
	SINUS	0016	4.5	6	15.7	-	-	-	-	-	-	-	-	-	27	30	36
	SINUS	0020	5.5	7.5	19.5	-	-	-	-	-	-	-	-	-	30	36	43
	SINUS	0016	-	•	-	9.2	12.5	17.9	11	15	18.3	12.5	17	18.9	27	30	36
	SINUS	0017	-	-	-	9.2	12.5	17.9	11	15	18.3	12.5	17	18.9	30	32	37
	SINUS	0020	-	•	-	11	15	21	15	20	25	15	20	23.2	30	36	43
	SINUS	0023	7.5	10	25.7	-	-	-	-	-	-	-	-	-	38	42	51
S12	SINUS	0025	-	-	-	15	20	29	18.5	25	30	18.5	25	28	41	48	58
312	SINUS	0030	-	•	-	18.5	25	35	22	30	36	22	30	33	41	56	67
	SINUS	0033	11	15	36	-	•	-	ı	-	-	•	•	-	51	56	68
	SINUS	0034	-	•	-	22	30	41	25	35	40	28	38	41	57	63	76
	SINUS	0036	-	-	-	25	35	46	30	40	48	30	40	44	60	72	86
	SINUS	0037	15	20	50	-	•	-	•	-	-	•	-	1	65	72	83
S15	SINUS	0040	15	20	50	25	35	46	30	40	48	37	50	53	72	80	88
313	SINUS	0049	18.5	25	61	30	40	55	37	50	58	45	60	64	80	96	115
	SINUS	0060	22	30	71	37	50	67	45	60	70	50	70	70	88	112	134
S20	SINUS	0067	25	35	80	45	60	80	50	70	75	55	75	78	103	118	142
320	SINUS	0074	30	40	96	50	70	87	55	75	85	65	90	88	120	144	173
	SINUS	0086	32	45	103	55	75	98	65	90	100	75	100	103	135	155	186
	SINUS	0113	45	60	135	75	100	133	75	100	116	90	125	127	180	200	240
S30	SINUS	0129	50	70	150	80	110	144	90	125	135	110	150	153	195	215	258
	SINUS	0150	55	75	170	90	125	159	110	150	166	132	180	180	215	270	324
	SINUS	0162	65	90	195	110	150	191	132	180	198	140	190	191	240	290	324

(continued)

	SINUS	0180	75	100	231	132	180	228	160	220	237	160	220	218	300	340	408
S41	SINUS	0202	80	110	250	150	200	264	185	250	279	200	270	273	345	420	504
341	SINUS	0217	110	150	332	185	250	321	220	300	326	220	300	300	375	460	552
	SINUS	0260	110	150	332	200	270	341	260	350	390	280	380	393	425	560	672
	SINUS	0313	132	180	390	220	300	375	260	350	390	300	400	413	480	600	720
S51	SINUS	0367	150	200	458	250	340	421	315	430	459	355	485	471	550	680	792
	SINUS	0402	160	220	475	315	430	528	375	510	540	400	550	544	680	850	1020
S60	SINUS	0457	200	270	593	315	430	528	400	550	576	450	610	612	720	880	1056
360	SINUS	0524	220	300	661	355	480	589	450	610	665	500	680	673	800	960	1152
S60P	SINUS	0598P	-	-	-	400	550	680	500	680	731	560	760	751	900	1100	1152
	SINUS	0598	-	-	-	400	550	680	500	680	731	560	760	751	900	1100	1320
S65 1)	SINUS	0748	-	-	-	500	680	841	560	760	817	630	860	864	1000	1300	1560
	SINUS	0831	-	-	-	560	760	939	630	860	939	710	970	960	1200	1440	1728
	SINUS	0964	-	-	-	710	970	1200	800	1090	1160	900	1230	1184	1480	1780	2136
S75 1)	SINUS	1130	-	-	-	800	1090	1334	900	1230	1287	1000	1360	1317	1700	2040	2448
	SINUS	1296	-	-	-	1000	1360	1650	1100	1500	1630	1170	1600	1560	2100	2520	3024
S90 1)	SINUS	1800	-	-	-	1200	1650	2050	1450	1970	2050	1500	2000	2050	2600	3100	3720
390	SINUS 207		-		-	1400	1910	2400	1700	2300	2400	1750	2400	2400	3000	3600	4000
	erter su _l voltage		280	-240\ -340\	/dc.				530-70	00Vac 05Vdc	•						
			1) Inp	ut ind	ducto	r and οι	ıtput in	ducto	r requ	ired.							

5.1.3.2. Technical Sheet for Voltage Classes 2T and 4T – Parallel-connected Models

						-	Applica	able	Moto	r Pow	er				lnam	lmax
Size	Sinus Pen	ta Model	200	-240V	ас	380	0-415V	ac	440	0-460V	ac	480	-500V	ас	lnom	ımax
			kW	HP	Α	kW	HP	Α	kW	HP	Α	kW	HP	Α	Α	Α
S43 (2xS41)	SINUS	0523	220	300	661	355	480	589	450	610	665	500	680	673	800	960
050	SINUS	0599	-	-	-	400	550	680	500	680	731	560	760	751	900	1100
S53 (2xS51)	SINUS	0749	•	-	-	500	680	841	560	760	817	630	860	864	1000	1300
(2331)	SINUS	0832	-	•	-	560	760	939	630	860	939	710	970	960	1200	1440
055	SINUS	0850	-	-	-	630	860	1080	710	970	1043	800	1090	1067	1340	1600
S55 (3xS51)	SINUS	0965	-	-	-	710	970	1200	800	1090	1160	900	1230	1184	1480	1780
(38331)	SINUS	1129	-	-	-	800	1090	1334	900	1230	1287	1000	1360	1317	1700	2040
Inver	ter Supply V	oltage		240V 340V	,					0-500\ 0-705\	,					
	See Use	r Manual S	INUS I	PENT.	A - F	Paralle	el-conr	necte	d Mo	dels S	41S	52				

Kev:

Inom = continuous rated current of the inverter

Imax = max. current produced by the inverter for 120s every 20 min up to S30, for 60s every 10 min for S41 and greater

5.1.3.3. Technical Sheet for 5T and 6T Voltage Classes

Sinus Penta Mode		0:	D 1 -		Арр	licable M	lotor Pov	ver				
Sinus Sinu	Size				575Vac		66	60-690Va	С	Inom	Imax	
Samus Samu		IVIO	uei	kW	HP	Α	kW	HP	Α	1		(3 5.)
Samus Samu		SINUS	0003	3	4	4.4	4	5.5	4.8	7	8.5	10
SINUS SINU		SINUS	0004		5.5	5.7			4.8	9	11	13
SINUS O012 7.5 10 10 7.5 10 8.4 13 16 19		SINUS	0006	5.5	7.5	7.6	7.5	10	8.4	11	13.5	16
SINUS 0019	314	SINUS	0012	7.5	10	10	7.5	10	8.4	13	16	19
SINUS 0021		SINUS	0018	9.2	12.5	12.5	11	15	12.1	17	21	25
SINUS 0022 18.5 25 25 22 30 23 33 40 48 48 58 58 58 58 58 37 50 39 52 63 76 58 58 58 58 58 58 58 5		SINUS	0019	11	15	14	11	15	12.1	21	25	30
SINUS 0024 22 30 28 22 30 23 40 48 58		SINUS	0021	15	20	20	15	20	16.8	25	30	36
SINUS 0032 30	S14	SINUS	0022	18.5	25	25	22	30	23	33	40	48
SINUS 0042 37 50 47 37 50 39 60 72 86		SINUS	0024	22	30	28	22	30	23	40	48	58
SINUS 0051 45 60 55 75 75 56 80 96 115		SINUS	0032		40	39	37	50	39	52	63	76
SINUS 0062 55 75 70 75 100 78 105 132 162		SINUS	0042	37	50	47	37	50	39	60	72	86
SINUS 0062 55 75 70 75 100 75 105 135 162	522	SINUS	0051		60	55	55		56	80	96	115
Sinus 0076 75 100 95 90 125 94 125 165 198 Sinus 0088 110 150 135 110 150 113 150 200 240 Sinus 0131 110 150 135 160 220 158 190 250 300 Sinus 0164 132 180 188 185 250 186 220 300 300 300 300 Sinus 0181 185 250 225 220 300 220 305 380 420 Sinus 0201 200 270 240 250 340 250 330 420 420 Sinus 0218 220 300 275 315 430 310 360 465 560 560 Sinus 0259 280 380 336 355 485 341 400 500 665 788 Sinus 0314 330 450 395 450 610 440 500 665 788 Sinus 0368 355 485 420 500 680 480 560 720 850 Sinus 0401 400 550 473 560 770 544 640 850 850 Sinus 0457 500 680 585 560 770 544 640 850 850 Sinus 0598 630 860 720 710 970 696 900 1100 1320 Sinus 0748 710 970 800 900 1230 858 1000 1300 1440 S70 10 Sinus 0831 800 1090 900 1000 1360 954 1200 1440 S70 10 Sinus 0964 1000 1360 1145 1220 1660 1187 1480 1780 250 Sinus 0964 1000 1360 1145 1220 1660 1187 1480 1780 250 Sinus 130 1170 1600 1360 1400 1910 1360 100 2500 2500 2500 2500 2500 2500 300 300 300 300 300 300 300 300 300	022	SINUS	0062			70		75	56	85	110	132
SINUS 0088 110 150 135 110 150 113 150 200 240			0069			70			78	105	135	162
Sinus 131 110 150 135 160 220 158 190 250 30		SINUS	0076		100	95	90	125	94	125	165	198
SINUS	632	SINUS	8800	110	150	135	110	150	113	150	200	240
SHUS 0181 185 250 225 220 300 220 305 380 420 SINUS 0201 200 270 240 250 340 250 330 420 420 SINUS 0218 220 300 275 315 430 310 360 465 560 SINUS 0259 280 380 336 355 485 341 400 560 560 SINUS 0290 300 400 358 400 550 390 450 600 720 SINUS 0314 330 450 395 450 610 440 500 665 798 SINUS 0368 355 485 420 500 680 480 560 720 850 SINUS 0401 400 550 473 560 770 544 640 850 850 <td< th=""><th>332</th><th></th><th></th><th></th><th></th><th>135</th><th></th><th></th><th>158</th><th>190</th><th>250</th><th>300</th></td<>	332					135			158	190	250	300
SINUS O201 200 270 240 250 340 250 330 420 420		SINUS	0164	132	180	168	185	250	185	230	300	360
SINUS O218 C20 C300 C275 C315 C430 C310 C360 C465 C560		SINUS	0181	185	250	225	220	300	220	305	380	420
SINUS 0218 220 300 275 315 430 310 360 465 560 560 SINUS 0259 280 380 336 355 485 341 400 560 560 560 560 560 560 560 560 560 5	S42	SINUS	0201		270	240	250	340	250	330	420	420
SINUS 0290 300 400 358 400 550 390 450 600 720	042					275			310	360	465	560
SINUS 0314 330 450 395 450 610 440 500 665 798		SINUS	0259	280	380	336	355	485	341	400	560	560
Sinus O368 355 485 420 500 680 480 560 720 850 Sinus O401 400 550 473 560 770 544 640 850 850 Sinus O457 500 680 585 560 770 544 720 880 1056 Sinus O524 560 770 630 630 860 626 800 960 1152 Sinus O598 630 860 720 710 970 696 900 1100 1320 Sinus O748 710 970 800 900 1230 858 1000 1300 1440 S70		SINUS	0290	300	400	358	400	550	390	450	600	720
SINUS 0368 355 485 420 500 680 480 560 720 850	952	SINUS	0314	330	450	395	450	610	440	500	665	798
SINUS 0457 500 680 585 560 770 544 720 880 1056 SINUS 0524 560 770 630 630 860 626 800 960 1152 SINUS 0598 630 860 720 710 970 696 900 1100 1320 SINUS 0748 710 970 800 900 1230 858 1000 1300 1440 S70	332	SINUS	0368	355	485	420	500	680	480	560	720	850
SINUS 0524 560 770 630 630 860 626 800 960 1152 SINUS 0598 630 860 720 710 970 696 900 1100 1320 SINUS 0748 710 970 800 900 1230 858 1000 1300 1440 S70 SINUS 0831 800 1090 900 1000 1360 954 1200 1440 1440 S75 SINUS 0964 1000 1360 1145 1220 1660 1187 1480 1780 2136 SINUS 1130 1170 1600 1360 1400 1910 1360 1700 2040 2448 S80 SINUS 1296 1340 1830 1560 1610 2190 1560 2100 2520 2520 S90 SINUS 1800 1750 2400 2050 2100 2860 2100 2600 3100 3600 SINUS 2076 2000 2720 2400 2400 3300 2400 3000 3600 Inverter Supply Voltage S00-600Vac;		SINUS	0401	400	550	473	560	770	544	640	850	850
SINUS 0598 630 860 720 710 970 696 900 1100 1320 SINUS 0748 710 970 800 900 1230 858 1000 1300 1440 S70 SINUS 0831 800 1090 900 1000 1360 954 1200 1440 1440 S75 SINUS 0964 1000 1360 1145 1220 1660 1187 1480 1780 2136 SINUS 1130 1170 1600 1360 1400 1910 1360 1700 2040 2448 S80 SINUS 1296 1340 1830 1560 1610 2190 1560 2100 2520 2520 S90 SINUS 1800 1750 2400 2050 2100 2860 2100 2600 3100 3600 SINUS 2076 2000 2720 2400 2400 3300 2400 3000 3600 Inverter Supply Voltage S00-600Vac;						585		770	544	720	880	1056
SINUS 0598 630 860 720 710 970 696 900 1100 1320	S65 1)					630			626	800	960	1152
S70 1) SINUS 0831 800 1090 900 1000 1360 954 1200 1440 1440 S75 1) SINUS 0964 1000 1360 1145 1220 1660 1187 1480 1780 2136 SINUS 1130 1170 1600 1360 1400 1910 1360 1700 2040 2448 S80 1) SINUS 1296 1340 1830 1560 1610 2190 1560 2100 2520 2520 S90 1) SINUS 1800 1750 2400 2050 2100 2860 2100 2600 3100 3600 Inverter Supply Voltage 500-600Vac; 705-845Vdc 575-690Vac; 815-970Vdc						720			696	900	1100	1320
S75 1) SINUS 0964 Operation 1000 Operation 1360 Operation 1145 Operation 1220 Operation 1660 Operation 1187 Operation 1480 Operation 1780 Operation 2136 Operation S80 1) SINUS Operation 1296 Operation 1340 Operation 1560 Operation 1610 Operation 2190 Operation 1560 Operation 2100 Operation 2520 Operation 2600 Operation 3600 Operation	4)				970	800			858	1000	1300	1440
SINUS 1130 1170 1600 1360 1400 1910 1360 1700 2040 2448	S70 ¹⁾					900			954	1200	1440	1440
SINUS 1130 1170 1600 1360 1400 1910 1360 1700 2040 2448	S75 1)	SINUS	0964	1000	1360	1145	1220	1660	1187	1480	1780	2136
SINUS 1800 1750 2400 2050 2100 2860 2100 2600 3100 3600 SINUS 2076 2000 2720 2400 2400 3300 2400 3000 3600 3600 Inverter Supply Voltage 500-600Vac; 705-845Vdc 575-690Vac; 815-970Vdc		SINUS	1130	1170	1600	1360	1400	1910	1360	1700	2040	2448
SINUS 2076 2000 2720 2400 2400 3300 2400 3600	S80 1)	SINUS	1296	1340	1830	1560	1610	2190	1560	2100	2520	2520
Inverter Supply Voltage 500-600Vac; 705-845Vdc 575-690Vac; 815-970Vdc	S00 ¹⁾	SINUS	1800	1750	2400	2050	2100	2860	2100	2600	3100	3600
705-845Vdc 815-970Vdc	390	SINUS	2076	2000	2720	2400	2400	3300	2400	3000	3600	3600
1) Input inductor and output inductor required.	Inverte	er Supply	Voltage									
le arararer. aa a ada aradaaa.			1) Input inc	ductor and	d output ir	nductor re	equired.					

5.1.3.4. Technical Sheet for Voltage Classes 5T and 6T – Parallel -connected Models

				Ap	plicable	Motor Pow	er		laam	Imax
Size	Sinus Pen	ta Model		575Vac		66	0-690Vac		Inom	Imax
			kW	Α	Α	kW	HP	Α	Α	Α
\$44 (2x\$42)	SINUS	0459	500	680	585	560	770	544	720	880
	SINUS	0526	560	770	630	630	860	626	800	960
S54	SINUS	0600	630	860	720	710	970	696	900	1100
(2xS52)	SINUS	0750	710	970	800	900	1230	858	1000	1300
	SINUS	0828	800	1090	900	1000	1360	954	1200	1440
S56	SINUS	0960	1000	1360	1145	1220	1660	1187	1480	1780
(3xS52)	SINUS	1128	1170	1600	1360	1400	1910	1360	1700	2040
Inverte	r supply volta	age	_	00-600Va 05-845Vd	- ,		5-690Vac; 5-970Vdc.			
Se	ee User Manua	al SINUS PI	ENTA - P	arallel-con	nected M	lodels S41.	.S52			

Key:

Inom = continuous rated current of the inverter

Imax = max. current produced by the inverter for 60 seconds every 10 min

5.1.4. STRONG Applications: Overload up to 200% (60/120s) or up to 240% (3s)

5.1.4.1. Technical Sheet for 2T and 4T Voltage Classes

	0:	4 -				Ар	plicab	le M	otor P	ower							
Size	Sinus P Mode		200	-240V	ас	380)-415V	ас	440	-460V	ac	480	-500V	ас	Inom	lmax	lpeak (3s)
	Mod	01	kW	HP	Α	kW	HP	Α	kW	HP	Α	kW	HP	Α			(03)
	SINUS	0005	-	-	-	2.2	3	4.9	3	4	5.6	3.7	5	6.1	10.5	11.5	14
	SINUS	0007	1.5	2	6.1	3	4	6.4	3.7	5	6.6	4.5	6	7.2	12.5	13.5	16
	SINUS	8000	1.8	2.5	7.3	-	-	-	-	-	-	-	-	-	15	16	19
	SINUS	0009	-	-	-	4	5.5	8.4	4.5	6	7.8	5.5	7.5	9.0	16.5	17.5	19
	SINUS	0010	2.2	3	8.5	•	•	-	-	•	-	•	-	-	17	19	23
S05	SINUS	0011	-	-	-	4.5	6	9.0	5.5	7.5	9.7	7.5	10	11.8	16.5	21	25
	SINUS	0013	3	4	11.2	•	-	-		-	1	-	-	-	19	21	25
	SINUS	0014	-	-	-	5.5	7.5	11.2	7.5	10	12.5	9.2	12.5	14.3	16.5	25	30
	SINUS	0015	3.7	5	13.2	-	-	-	-	-	-	-	-	-	23	25	30
	SINUS	0016	4	5.5	14.6	-	•	-	-	-	-	-	-	-	27	30	36
	SINUS	0020	4.5	6	15.7	-	•	-	-	-	-	-	-	-	30	36	43
	SINUS	0016	-	-	-	7.5	10	14.8	9.2	12.5	15.6	11	15	16.5	27	30	36
	SINUS	0017	-	-		7.5	10	14.8	9.2	12.5	15.6	12.5	17	18.9	30	32	37
	SINUS	0020	-	-	-	9.2	12.5	17.9	11	15	18.3	12.5	17	18.9	30	36	43
	SINUS	0023	5.5	7.5	19.5	-	-	-	•	-	-	-	-	-	38	42	51
040	SINUS	0025	-	-	-	11	15	21	15	20	25	15	20	23.2	41	48	58
S12	SINUS	0030	-	-	-	15	20	29	18.5	25	30	18.5	25	28	41	56	67
	SINUS	0033	7.5	10	25.7	-	-	-	-	-	-	-	-	-	51	56	68
	SINUS	0034	-	-	-	18.5	25	35	22	30	36	22	30	33	57	63	76
	SINUS	0036	-	-	-	22	30	41	25	35	40	28	38	41	60	72	86
	SINUS	0037	11	15	36	•	•	-	-	•	-	•	-	-	65	72	83
S15	SINUS	0040	12.5	17	41	22	30	41	25	35	40	30	40	44	72	80	88
313	SINUS	0049	15	20	50	25	35	46	30	40	48	37	50	53	80	96	115
	SINUS	0060	18.5	25	61	30	40	55	37	50	58	45	60	64	88	112	134
S20	SINUS	0067	20	27	66	32	45	59	40	55	63	50	70	70	103	118	142
320	SINUS	0074	22	30	71	37	50	67	45	60	70	55	75	78	120	144	173
	SINUS	0086	25	35	80	45	60	80	55	75	85	65	90	88	135	155	186
	SINUS	0113	30	40	96	55	75	98	65	88	100	75	100	103	180	200	240
S30	SINUS	0129	37	50	117	65	90	114	75	100	116	85	115	120	195	215	258
330	SINUS	0150	45	60	135	75	100	133	90	125	135	90	125	127	215	270	324
	SINUS	0162	55	75	170	90	125	159	110	150	166	110	150	153	240	290	324

SINUS PENTA

(continued)

	SINUS	0180	60	85	185	110	150	191	120	165	184	132	180	180	300	340	408
C44	SINUS	0202	65	90	195	132	180	228	150	200	230	160	220	218	345	420	504
S41	SINUS	0217	75	100	231	150	200	260	160	220	245	185	250	257	375	460	552
	SINUS	0260	90	125	277	160	220	273	200	270	307	200	270	273	425	560	672
	SINUS	0313	110	150	332	185	250	321	220	300	326	250	340	337	480	600	720
S51	SINUS	0367	120	165	375	200	270	341	250	340	366	260	350	359	550	680	792
	SINUS	0402	132	180	390	280	380	480	315	430	462	355	480	471	680	850	1020
S60	SINUS	0457	160	220	475	280	380	480	330	450	493	375	510	497	720	880	1056
300	SINUS	0524	185	250	550	315	430	528	375	510	540	400	550	544	800	960	1152
S60P	SINUS	0598P	-	-	-	355	480	589	400	550	591	450	610	612	900	1100	1152
	SINUS	0598	-	-	-	355	480	589	400	550	591	450	610	612	900	1100	1320
S65 1)	SINUS	0748	-	-	-	400	550	680	500	680	731	560	760	751	1000	1300	1560
	SINUS	0831	-	-	-	450	610	765	560	760	817	630	860	864	1200	1440	1728
	SINUS	0964	-	-	-	560	770	939	710	970	1043	800	1090	1067	1480	1780	2136
S75 1)	SINUS	1130	-	-	-	710	970	1200	800	1090	1160	900	1230	1184	1700	2040	2448
	SINUS	1296	-	-	-	800	1090	1334	900	1230	1287	1000	1360	1317	2100	2520	3024
S90 1)	SINUS	1800	-	-	-	1000	1360	1650	1170	1600	1650	1200	1650	1650	2600	3100	3720
390	SINUS	2076	-	-	-	1200	1650	2050	1450	1970	2050	1500	2000	2050	3000	3600	4000
Inverter 200-240Vac; 380-500Vac;																	
sup	oply volta			-340Vc	lc.				530-	.705Vc	lc.						
	¹⁾ Input inductor and output inductor required.																

5.1.4.2. Technical Sheet for Voltage Classes 2T and 4T – Parallel-connected Models

			Applicable Motor Power							ln am	lmax					
Size	Size Sinus Penta Model		200-240Vac		380	380-415Vac		440-460Vac		ас	480	-500V	ас	mom	lmax	
			kW	HP	Α	kW	HP	Α	kW	HP	Α	kW	HP	Α	Α	Α
S43 (2xS41)	SINUS	0523	185	250	550	315	430	528	375	510	540	400	550	544	800	960
CEO	SINUS	0599	-	-	-	355	480	589	400	550	591	450	610	612	900	1100
S53 (2xS51)	SINUS	0749	-	-	-	400	550	680	500	680	731	560	760	751	1000	1300
(2X331)	SINUS	0832	-	-	-	450	610	765	560	760	817	630	860	864	1200	1440
CEE	SINUS	0850	-	-	-	500	680	841	630	860	939	710	970	960	1340	1600
S55 (3xS51)	SINUS	0965	-	-	-	560	770	939	710	970	1043	800	1090	1067	1480	1780
(3X331)	SINUS	1129	-	-	-	710	970	1200	800	1090	1160	900	1230	1184	1700	2040
Inverter Supply Voltage 200-2 280-3					,	' 										
See User Manual SINUS PENTA - Parallel-connected Models S41S52								necte	d Mod	els S4	1S	52				

Key:

Inom = continuous rated current of the inverter

Imax = max. current produced by the inverter for 120s every 20 min up to S30, for 60s every 10 min for S41 and greater

5.1.4.3. Technical Sheet for 5T and 6T Voltage Classes

SINUS 0003 3 4 4.4 SINUS 0004 4 5.5 5.7 SINUS 0006 4 5.5 5.7 SINUS 0012 5.5 7.5 7.6 7 SINUS 0018 7.5 10 10 9 SINUS 0019 9.2 12.5 12.5 SINUS 0021 11 15 14 SINUS 0022 15 20 20 11 SINUS 0024 18.5 25 25 SINUS 0032 25 35 32 SINUS 0042 30 40 39 3 SINUS 0051 37 50 47 SINUS 0062 45 60 55 SINUS 0069 45 60 55 SINUS 0076 55 75 70 SINUS 0088 75 100 95	or Power			lma a v	lpeak
SINUS 0003 3 4 4.4 SINUS 0004 4 5.5 5.7 SINUS 0006 4 5.5 5.7 SINUS 0012 5.5 7.5 7.6 7 SINUS 0018 7.5 10 10 9 SINUS 0019 9.2 12.5 12.5 SINUS 0021 11 15 14 SINUS 0022 15 20 20 11 SINUS 0024 18.5 25 25 SINUS 0032 25 35 32 SINUS 0042 30 40 39 3 SINUS 0051 37 50 47 SINUS 0062 45 60 55 SINUS 0069 45 60 55 SINUS 0076 55 75 70 70 SINUS 0088 75 100 95	660-690V	ac	Inom	imax	(3s)
S12 5T S14 SINUS 0004 4 5.5 5.7 SINUS 0006 4 5.5 5.7 5.7 5.7 SINUS 0012 5.5 7.5 7.6 7.6 7.5 SINUS 0018 7.5 10 10 9.2 SINUS 0021 11 15 14 15 15 14 15 14 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	kW HP	Α	Α	Α	Α
S12 5T SINUS 0006 4 5.5 5.7 5 5 5 5 5 5 5 5 5	3 4	3.7	7	8.5	10
S14 SINUS 0006 4 5.5 5.7 5 SINUS 0012 5.5 7.5 7.6 7 SINUS 0018 7.5 10 10 9 SINUS 0019 9.2 12.5 12.5 2 SINUS 0021 11 15 14 7 SINUS 0022 15 20 20 16 SINUS 0024 18.5 25 25 25 SINUS 0032 25 35 32 3 SINUS 0042 30 40 39 3 SINUS 0051 37 50 47 4 SINUS 0062 45 60 55 5 SINUS 0076 55 75 70 7 SINUS 0088 75 100 95 95	4 5.5	4.8	9	11	13
SINUS 0012 5.5 7.5 7.6 7.6 7.5 SINUS 0018 7.5 10 10 9 9 9.2 12.5 12.5 12.5 12.5 SINUS 0021 11 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15 14 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	5.5 7.5	6.3	11	13.5	16
SINUS 0019 9.2 12.5 12.5 12.5 SINUS 0021 11 15 14 15 14 15 SINUS 0022 15 20 20 15 SINUS 0024 18.5 25 25 25 SINUS 0032 25 35 32 35 SINUS 0042 30 40 39 39 SINUS 0051 37 50 47 SINUS 0062 45 60 55 SINUS 0069 45 60 55 SINUS 0069 45 60 55 SINUS 0076 55 75 70 57 SINUS 0088 75 100 95 95	7.5 10	8.4	13	16	19
SINUS 0021 11 15 14 20 20 16 SINUS 0022 15 20 20 16 SINUS 0024 18.5 25 25 25 35 32 32 32 32 32 32 32 32 32 32 32 32 32	9.2 12.5	10.2	17	21	25
S14 SINUS 0022 15 20 20 18 SINUS 0024 18.5 25 25 25 SINUS 0032 25 35 32 3 SINUS 0042 30 40 39 3 SINUS 0051 37 50 47 47 SINUS 0062 45 60 55 5 SINUS 0069 45 60 55 5 SINUS 0076 55 75 70 70 SINUS 0088 75 100 95 95	11 15	12	21	25	30
SINUS 0024 18.5 25 25 25 31 32 33 32 32	11 15	12	25	30	36
SINUS 0032 25 35 32 3 SINUS 0042 30 40 39 3 SINUS 0051 37 50 47 47 47 47 47 47 47 47 47 47 47 47 47	18.5 25	21	33	40	48
S1NUS 0042 30 40 39 3 SINUS 0051 37 50 47 47 47 50 50 50 50 50 50 50 50 50 50 50 50 50	22 30	23	40	48	58
S1NUS 0051 37 50 47 47 SINUS 0062 45 60 55 5 SINUS 0069 45 60 55 5 SINUS 0076 55 75 70 7 SINUS 0088 75 100 95 95	30 40	33	52	63	76
S1NUS 0062 45 60 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	30 40	33	60	72	86
SINUS 0062 45 60 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	45 60	46	80	96	115
SINUS 0076 55 75 70 70 SINUS 0088 75 100 95 95	55 75	56	85	110	132
SINUS 0088 75 100 95 95	55 75	56	105	135	162
\$32	75 100	77	125	165	198
³³²	90 125	95	150	200	240
01100 0131 30 123 110 1	110 150	115	190	250	300
SINUS 0164 110 150 138 1	132 180	140	230	300	360
SINUS 0181 160 220 198 2	200 270	198	305	380	420
S42 SINUS 0201 160 220 198 2	220 300	220	330	420	420
SINUS 0218 200 270 240 2	250 340	250	360	465	560
SINUS 0259 220 300 275 3	315 430	310	400	560	560
SINUS 0290 250 340 300 3	355 480	341	450	600	720
S52 SINUS 0314 280 380 336 3	375 510	360	500	665	798
SINUS 0368 315 430 367 4	400 550	390	560	720	850
SINUS 0401 355 480 410 5	500 680	480	640	850	850
	500 680	480	720	880	1056
865 7	560 770	544	800	960	1152
31NU3 U396 30U 11U 63U 0	630 860	626	900	1100	1320
	800 1090	773	1000	1300	1440
S70 ¹⁾ SINUS 0831 710 970 800 9	900 1230	858	1200	1440	1440
S75 1) SINUS 0964 900 1230 1000 10	000 1360	954	1480	1780	2136
	100 1500	1086	1700	2040	2448
S80 1) SINUS 1296 1150 1570 1337 13	380 1880	1337	2100	2520	2520
00000 4400 4000 555	750 2380	1700	2600	3100	3600
SINUS 1800 1460 1990 1700 17 SINUS 2076 1750 2400 2050 2	2100 2860	2100	3000	3600	3600
Inverter supply voltage 500-600Vac; 705-845Vdc 1) Input inductor and output inductor require	575-690V 815-970V				

5.1.4.4. Technical Sheet for Voltage Classes 5T and 6T - Parallel-connected Models

				Ap	plicable	Motor Pow	er		Inom	lmax
Size	Sinus Pen	Sinus Penta Model		575Vac			660-690Vac			Imax
			kW	HP	Α	kW	HP	Α	Α	Α
\$44 (2x\$42)	SINUS	0459	400	550	480	500	680	480	720	880
	SINUS	0526	450	610	532	560	770	544	800	960
S54	SINUS	0600	560	770	630	630	860	626	900	1100
(2xS52)	SINUS	0750	630	860	720	800	1090	773	1000	1300
	SINUS	0828	710	970	800	900	1230	858	1200	1440
S56	SINUS	0960	900	1230	1000	1000	1360	954	1480	1780
(3xS52)	SINUS	1128	1000	1360	1145	1100	1500	1086	1700	2040
Inverter	Inverter Supply Voltage			500-600Vac; 705-845Vdc.			575-690Vac; 815-970Vdc.			
Se	ee User Manua	al SINUS PI	ENTA - Parallel-connected Models S41S52]	

Key:

Inom = continuous rated current of the inverter

Imax = max. current produced by the inverter for 60 seconds every 10 min

5.2. Carrier Frequency Setting

The continuous current (Inom) generated by the inverter in continuous operation type S1 at 40°C depends on carrier frequency. The higher the carrier frequency, the more the motor is silent; the control performance is enhanced, but this causes a greater heating of the inverter, thus affecting energy saving. Using long cables (especially shielded cables) for connecting the motor is not recommended when the carrier frequency is high.

The max. recommended carrier values that can be set in parameter **C002** (Carrier Frequency menu) based on the continuous current delivered by the Sinus Penta are given in the tables below.

CAUTION

Larger combinations of carrier frequency and continuous output currents may trigger alarm **A094** (Heat sink overtemperature).

For example, if a Penta S05 0014 4T with 11kHz carrier frequency is to be used, the max. continuous output current exceeding 0.70*Inom may trigger alarm **A094**.

CAUTION

The FOC and SYN control algorithms exploit the following:

f_{carrier} max if f_{carrier} max < 8kHz (whatever the value in C002);

8kHz if f_{carrier} max > 8kHz and C002 < 8kHz;
 C002 if f_{carrier} max > 8kHz and C002 > 8kHz.

5.2.1. IP20 and IP00 Models - Class 2T-4T

			quency (kHz) 2)	Carrier			
Size	Sinus Penta Model		ased on the			(K	Hz)
		Inom	0.85* Inom	0.70* Inom	0.55* Inom	Def.	Мах.
	0005	12.8	16	16	16	5	16
	0007	10	12.8	16	16	5	16
S05 4T	0009	5	8	11	16	5	16
	0011	5	8	11	16	5	16
	0014	5	8	11	16	5	16
	0007	16	16	16	16	5	16
	8000	10	10	10	10	5	10
	0010	10	10	10	10	5	10
S05 2T	0013	10	10	10	10	5	10
	0015	10	10	10	10	5	10
	0016	10	10	10	10	3	10
	0020	5	10	10	10	3	10
	0016	10	10	10	10	3	10
	0017	8	10	10	10	3	10
	0020	8	10	10	10	3	10
S12 4T	0025	5	6	8	10	3	10
	0030	5	6	8	10	3	10
	0034	5	10	10	10	3	10
	0036	5	10	10	10	3	10
	0023	10	10	10	10	3	10
S12 2T	0033	10	10	10	10	3	10
	0037	3	8	10	10	3	10

SINUS PENTA

Size	Sinus Penta Model	(p	ecommended parameters C ased on the o	001 and C00 output curre	2) nt	Cal	rrier Hz)
		Inom	0.85* Inom	0.70* Inom	0.55* Inom	Def.	Max.
S15 2T/4T	0040	5	8	16	16	3	16
313 21/41	0049	3	5	10	12.8	3	12.8
	0060	10	10	10	10	3	10
S20 2T/4T	0067	10	10	10	10	3	10
320 21/41	0074	10	10	10	10	3	10
	0086	5	5	10	10	3	10
	0113	4	8	10	10	2	10
S30 2T/4T	0129	3	6	10	10	2	10
030 21741	0150	4	5	7	8	2	8
	0162	3	4	6	8	2	8
	0180	6	6	6	6	2	6
S41 2T/4T	0202	4	6	6	6	2	6
041 21741	0217	3	4	6	6	2	6
	0260	2	3	5	6	2	6
	0313	5	5	5	5	2	5
S51 2T/4T	0367	3	5	5	5	2	5
	0402	2	3	5	5	2	5
S60 2T/4T	0457	5	5	5	5	2	4
300 21/41	0524	4	5	5	5	2	4
S60P 4T	0598P	2	4	4	4	2	4
	0598	4	4	4	4	2	4
S65 4T	0748	4	4	4	4	2	4
	0831	4	4	4	4	2	4
	0964	4	4	4	4	2	4
S75 4T	1130	4	4	4	4	2	4
	1296	4	4	4	4	2	4
000 4T	1800	2	4	4	4	2	4
S90 4T	2076	2	4	4	4	2	4

5.2.2. IP20 and IP00 Models - Class 5T-6T

Size	Sinus Penta Model	(p	quency (kHz) 2) nt	Ca	rrier Hz)		
			ased on the o	0.70*	0.55*	D-4	
		Inom	Inom	Inom	Inom	Det.	Max.
	0003	5	5	5	5	3	5
	0004	5	5	5	5	3	5
S12 5T	0006	5	5	5	5	3	5
	0012	4	5	5	5	3	5
	0018	3	4	5	5	3	5
	0003	5	5	5	5	3	5
	0004	5	5	5	5	3	5
S14 6T	0006	5	5	5	5	3	5
	0012	5	5	5	5	3	5
	0018	5	5	5	5	3	5
	0019	5	5	5	5	3	5
	0021	5	5	5	5	3	5
S14 5T/6T	0022	5	5	5	5	3	5
	0024	4	5	5	5	3	5
	0032	3	4	5	5	3	5
	0042	5	5	5	5	3	5
000 FT/CT	0051	4	5	5	5	3	5
S22 5T/6T	0062	4	5	5	5	3	5
	0069	3	4	5	5	3	5
	0076	4	4	4	4	2	4
S32 5T/6T	. 0088	4	4	4	4	2	4
332 31/01	0131	3	4	4	4	2	4
	0164	2	3	4	4	2	4
	0181	2	3	4	4	2	4
S42 5T/6T	0201	2	3	4	4	2	4
342 31/01	0218	2	2	3	4	2	4
	0259	2	2	3	4	2	4
	0290	3	4	4	4	2	4
OFO FTIOT	0314	3	3	4	4	2	4
S52 5T/6T	0368	2	3	4	4	2	4
	0401	2	2	3	4	2	4
	0457	4	4	4	4	2	4
	0524	4	4	4	4	2	4
S65 5T/6T	0598	3	4	4	4	2	4
	0748	2	2	2	2	2	2
S70 5T/6T		2	2	2	2	2	2
	0964	2	2	2	2	2	2
S75 5T/6T	1130	2	2	2	2	2	2
S80 5T/6T		2	2	2	2	2	2
	1800	2	2	2	2	2	2
S90 5T/6T	2076	2	2	2	2	2	2

5.2.3. IP54 Models - Class 2T-4T

Size	Sinus Penta Model	(p	ecommended parameters C ased on the	001 and C003 output curre	2) nt	Ca	rrier Hz)			
		Inom	0.85* Inom	0.70* Inom	0.55* Inom	Def.	Max.			
	0005	12.8	16	16	16	5	16			
	0007	10	12.8	16	16	5	16			
S05 4T	0009	5	8	11	16	5	16			
	0011	5	8	11	16	5	16			
	0014	5	8	11	16	5	16			
	0007	16	16	16	16	5	16			
	8000	10	10	10	10	5	10			
	0010	10	10	10	10	5	10			
S05 2T	0013	10	10	10	10	5	10			
	0015	10	10	10	10	5	10			
	0016	10	10	10	10	3	10			
	0020	Unavailable model as IP54								
	0016	10	10	10	10	3	10			
	0017	8	10	10	10	3	10			
	0020	8	10	10	10	3	10			
S12 4T	0025	5	6	8	10	3	10			
	0030	5	6	8	10	3	10			
	0034	3	6	10	10	3	10			
	0036	3	6	8	10	3	10			
	0023	10	10	10	10	3	10			
S12 2T	0033	10	10	10	10	3	10			
	0037	3	8	10	10	3	10			
045 07/47	0040	5	8	16	16	3	16			
S15 2T/4T	0049	3	5	10	12.8	3	12.8			
	0060	10	10	10	10	3	10			
C00 0T/4T	0067	10	10	10	10	3	10			
S20 2T/4T	0074	10	10	10	10	3	10			
	0086	5	5	10	10	3	10			
	0113	4	8	10	10	2	10			
S30 2T/4T	0129	3	6	10	10	2	10			
330 21/41	0150	4	5	7	8	2	8			
	0162	3	4	6	8	2	8			

5.2.4. IP54 Models - Class 5T-6T

Size	Sinus Penta Model	(p	ecommended parameters C ased on the o	001 and C00	2)	Cai	rrier Hz)
	Wodel	Inom	0.85* Inom	0.70* Inom	0.55* Inom	Def.	Мах.
	0003	5	5	5	5	3	5
	0004	5	5	5	5	3	5
S12 5T	0006	5	5	5	5	3	5
	0012	4	5	5	5	3	5
	0018	3	4	5	5	3	5
	0003	5	5	5	5	3	5
	0004	5	5	5	5	3	5
S14 6T	0006	5	5	5	5	3	5
	0012	5	5	5	5	3	5
	0018	5	5	5	5	3	5
	0019	5	5	5	5	3	5
	0021	5	5	5	5	3	5
S14 5T/6T	0022	5	5	5	5	3	5
	0024	4	5	5	5	3	5
	0032		Unavailal	ble model as	IP54		
	0042	5	5	5	5	3	5
S22 5T/6T	0051	4	5	5	5	3	5
022 31/01	0062	4	5	5	5	3	5
	0069	3	4	5	5	3	5
	0076	4	4	4	4	2	4
S32 5T/6T	0088	4	4	4	4	2	4
32 0 . 70 1	0131	3	4	4	4	2	4
	0164	2	3	4	4	2	4

5.3. Operating Temperatures Based On Application Category

NOTE

The tables below relate to operating current values equal to or lower than the current rating stated in the relevant application sheet.

			APPLICATION	- CLASS 2T-4	Т				
	SINUS PENTA	LIGHT	STANDARD	HEAVY	STRONG				
Size	Model	Maximum allowable operating temperature (°C) without derating. Apply 2% derating of the rated current for every degree over but not exceeding 55°C maximum.							
	0007	50	50	50	55				
<u> </u>	8000	50	50	50	55				
<u> </u>	0010	50	50	50	55				
S05 2T	0013	50	50	50	55				
	0015	50	50	50	50				
<u> </u>	0016	45	50	50	55				
	0020	40	45	50	50				
	0023	50	50	50	55				
S12 2T	0033	45	50	50	50				
	0037	40	40	45	50				
	0005	50	50	50	55				
	0007	50	50	50	50				
S05 4T	0009	40	45	50	50				
	0011	40	40	45	50				
	0014	40	40	40	50				
	0016	45	45	50	55				
	0017	40	45	50	50				
	0020	40	40	50	50				
S12 4T	0025	40	40	50	50				
	0030	40	40	45	50				
	0034	40	45	50	50				
	0036	40	40	45	50				
S15	0040	40	45	50	50				
313	0049	40	40	50	50				
	0060	45	45	50	55				
S20	0067	40	40	50	50				
320	0074	45	45	50	55				
	0086	40	40	50	50				
	0113	45	45	50	50				
630	0129	40	45	50	50				
S30 -	0150	45	45	50	55				
	0162	40	40	50	50				

,		Α	PPLICATION -	CLASSES 2T-4	Т					
		LIGHT	STANDARD	HEAVY	STRONG					
Size	SINUS PENTA Model	derating.								
		Apply 2% derating of the rated current for every degree over but not exceeding 55°C maximum.								
	0180	45	50	50	55					
S41	0202	40	50	50	50					
341	0217	45	45	50	55					
	0260	40	40	45	50					
	0313	50	50	50	55					
S51	0367	50	50	50	55					
	0402	40	40	45	50					
S60	0457	45	45	50	55					
300	0524	40	40	50	50					
S60P	0598P	50	50	55	55					
	0598	50	50	50	55					
S65	0748	45	45	50	55					
	0831	40	40	50	50					
_	0964	50	50	50	55					
S75	1130	45	45	50	55					
	1296	40	40	50	50					
200	1800	50	50	50	55					
S90	2076	45	45	50	50					

		APPLICATION – CLASS 5T-6T							
6.	SINUS PENTA	LIGHT	STANDARD	HEAVY	STRONG				
Size	Model	Apply 2% der	vable operating te rating of the rated but not exceeding	current for ever	y degree over				
	0003	50	50	50	55				
	0004	50	50	50	50				
S12 5T	0006	50	50	50	55				
	0012	50	50	50	55				
	0018	40	40	50	50				
	0003	50	50	50	55				
	0004	50	50	50	55				
	0006	50	50	50	55				
	0012	50	50	50	55				
	0018	50	50	50	55				
S14	0019	50	50	50	55				
	0021	50	50	50	50				
	0022	50	50	50	55				
	0024	50	50	50	50				
	0032	40	50	50	50				
	0042	50	50	50	55				
000	0051	45	50	50	50				
S22	0062	45	45	50	55				
	0069	40	40	45	50				
	0076	50	50	50	55				
S32	0088	50	50	50	50				
532	0131	45	45	45	55				
	0164	40	45	45	50				
	0181	50	50	50	50				
S42	0201	40	40	45	50				
342	0218	45	45	50	55				
	0259	40	40	45	50				
	0290	50	50	50	55				
S52	0314	50	50	50	55				
332	0368	45	45	50	55				
	0401	40	40	45	50				
	0457	50	50	50	55				
S65	0524	50	50	50	50				
003	0598	50	50	50	55				
	0748	45	45	50	55				
S70	0831	40	40	50	50				
S75	0964	50	50	50	55				
	1130	45	45	50	55				
S80	1296	40	40	50	50				
S90	1800	50	50	50	55				
530	2076	45	45	50	50				

5.4. Short-circuit Currents

The Short Circuit Current is referred to the maximum Drive power. All the Motor Drive models are rated for Standard Fault Current values in accordance with UL508C and based on an Internal Solid State Short Circuit protection whose operation and whose manufacturing process complies UL508C.

CLASS 2T-4T					
Size	SINUS PENTA Model	Short Circuit Current kA			
S05 2T	All models	5			
S12 2T	All models	5			
S05 4T	All models	5			
S12 4T	00160030	5			
312 41	00340036	10			
S15	All models	10			
S20	All models	10			
S30	All models	10			
S41	01800217	18			
341	0260	30			
S51	03130367	30			
331	0402	42			
S60	All models	42			
S64/S65	All models	85			
S74/S75	09641130	150			
314/3/3	1296	200			
S84/S90	All models	200			

	CLASS 5T-6T	
Size	Model	Short Circuit Current
		kA
S12 5T	All models	5
S14 6T	00030022	5
314 01	00240032	10
S22	All models	10
S32	0076	10
332	00880164	18
S42	01810201	18
342	02180259	30
S52	0290	30
332	03140401	42
S64/S65	All models	85
S64/S70	All models	150
S74/S75	All models	150
S74/S80	All models	200
S84/S90	All models	200

6. ACCESSORIES

6.1. Supply Unit for Sinus Penta S41..S52 (SU465)

The supply unit SU45 is required for the 12-phase power supply for Sinus Penta drives S41..S52 (see section 12-pulse Connection for Modular Inverters).

The SU465 is to be installed as described below.

Please refer to the Transport and Handling and Unpacking sections.

The SU465 may be utilized as a 12-phase rectifier for the following Sinus Penta sizes:

- 1. S41
- 2. S42
- 3. S51
- 4. S52

Alternatively, it may be used as a standard rectifier.

The voltage input must range from 200Vac to 690Vac; the maximum allowable current for the SU465 is 465A.

An 18-pulse connection may be obtained by using N.2 supply units SU465.

The SU465 may also be used as a stand-alone supply unit. Please refer to section SU465 Operation as a Stand-alone Supply Unit.

The supply unit may also be used as a stand-alone supply unit. Please refer to the specific manual **15P0102A300** AC/DC Units.

The SU465 is an Open Type device featuring IP00 degree of protection suitable for installation inside a cabinet featuring at least IP3X degree of protection.

6.1.1. Delivery Check

Make sure that the equipment is not damaged and it complies with the equipment you ordered by referring to its front nameplate (see figure below).

If the equipment is damaged, contact the supplier or the insurance company concerned.

If the equipment does not comply with the one you ordered, please contact the supplier as soon as possible. If the equipment is stored before being started, make sure that temperatures range from $-25^{\circ}\text{C} \div +70^{\circ}\text{C}$ and that relative humidity is <95% (non-condensing).

The equipment guarantee covers any manufacturing defect. The manufacturer has no responsibility for possible damages due to the equipment transportation or unpacking. The manufacturer is not responsible for possible damages or faults caused by improper and irrational uses; wrong installation; improper conditions of temperature, humidity, or the use of corrosive substances. The manufacturer is not responsible for possible faults due to the equipment operation at values exceeding the equipment ratings and is not responsible for consequential and accidental damages.

The supply unit SU465 is covered by a two-year guarantee starting from the date of delivery.

6.1.2. Installing and Operating the SU465

Please refer to the general instructions given in section Installing and Operating the Equipment.

6.1.3. SU465 Nameplate

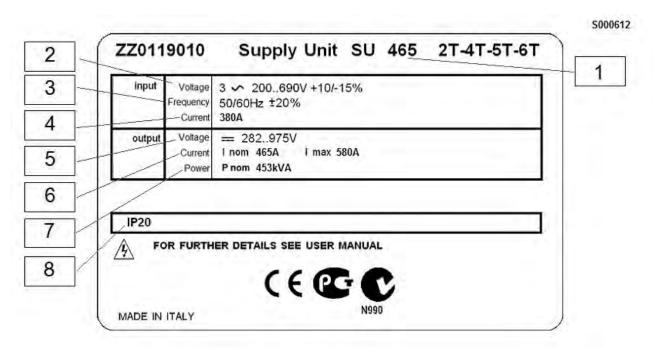


Figure 85: Nameplate for SU465

1. Model: SU465 Input voltage:
 Input frequency:
 Input current: 200-690Vac 50-60Hz

380A nominal current

5. Output voltage: 282-975Vdc

465A nominal 580A maximum

6. Output current:7. Nominal power: 453kVA 8. Degree of protection: IP20

6.1.4. SU465 Operating Mode

The SU465 may operate as follows:

• In parallel to a 12-phase converter (this solution reduces the harmonic contents to the power supply mains):

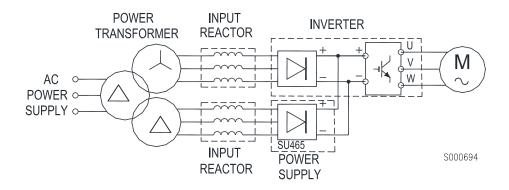


Figure 86: The SU465 in 12-phase configuration

• As a supply unit for a conversion unit:

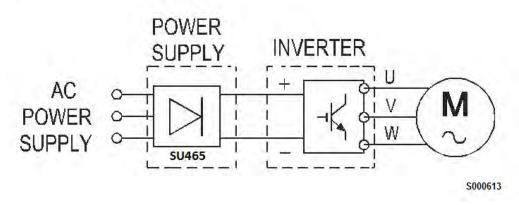


Figure 87: The SU465 as a supply unit of a conversion unit

6.1.4.1. SU465 Operation as a 12-phase Supply Unit

The 12-phase supply unit is controlled directly by the Penta drive. When operating as an additional rectifier bridge for the 12-phase connection, the following diagnostics functions are performed by the driver board of the Penta drive:

- · Phase detection and measurement
- Heatsink overtemperature measurement and alarm
- Precharge control

6.1.4.2. SU465 Operation as a Stand-alone Supply Unit

The SU465 may also be utilized as a stand-alone supply unit. If this is the case, the supply unit is to be controlled by an external device performing the following:

- Send the thyristor firing command
- Deliver +24V/20W per unit

And receiving the following via voltage-free relay contacts:

- Precharge status
- Thermoswitch status

When multiple supply units are connected in parallel, consider 5% derating in respect to the rated current.

6.1.5. System Requirements

As the input current is automatically controlled, the system must meet the following requirements:

- Provide the drive and the supply unit with line inductors as detailed in section Inductors to be Applied to the Sinus Penta and the SU465.
- The three-phase transformer must be:
 - o Symmetrical
 - o With Dy11d0 or Dy5d0 vector unit
 - o The secondary output voltages must range:
 - Within 5% of relative variation at full load
 - Within 0.5% under no-load conditions
 - The short-circuit current must be Vsc>4%
- Wiring to the transformer, the supply unit and the drive shall be as close as possible in terms of cable length and cable cross-section.

6.1.6. Technical Specifications

Electrical specifications:

Overvoltage category III (according to EN 61800-5-1)

MODEL	Rated input current (A)	Supply voltage	Rated output current (A)	Maximum output current (A)	Output voltage	Dissipated power (at rated current) (W)
SU465	380	200-690Vac	465	580	0-975Vdc	1160

Mechanical specifications:

MODEL	Degree of protection	Sound pressure (dB)
SU465	IP00(*)	57

(*) NEMA1 when using the special optional kit

6.1.7. Installing the SU465

6.1.7.1. Environmental Requirements for the SU465 Installation, Storage and Transport

Maximum surrounding air	−10 to +40°C with no derating
temperature	from +40°C to +55°C with 2% derating of the rated current for each degree beyond +40°C
Ambient temperatures for storage and transport	–25°C to +70°C.
	Pollution degree 2 or better (according to EN 61800-5-1).
Installation environment	Do not install in direct sunlight and in places exposed to conductive dust, corrosive gases, vibrations, water sprinkling or dripping (depending on IP ratings); do not install in salty environments.
Altitude	Max. altitude for installation 2000 m a.s.l. For installation above 2000 m and up to 4000 m, please contact Elettronica Santerno.
	Above 1000 m, derate the rated current by 1% every 100 m.
Operating ambient humidity	From 5% to 95%, from 1g/m³ to 25g/m³, non- condensing and non-freezing (class 3k3 according to EN 50178).
Storage ambient humidity	From 5% to 95%, from 1g/m³ to 25g/m³, non-condensing and non-freezing (class 1k3 according to EN 50178).
Ambient humidity during transport	Max. 95%; up to 60g/m³, condensation may appear when the equipment is not running (class 2k3 according to EN 50178).
Storage and operating atmospheric pressure	From 86 to 106 kPa (classes 3k3 and 1k4 according to EN 50178).
Atmospheric pressure during transport	From 70 to 106 kPa (class 2k3 according to EN 50178).

CAUTION

Ambient conditions strongly affect the inverter life. Do not install the equipment in places that do not have the above-mentioned ambient conditions.

6.1.7.2. Mounting the SU465

The SU465 must be installed on the left of the drive in upright position inside a cabinet. The mechanical dimensions and fixing points are given in the figures below.

If the braking unit or an additional supply unit is installed, those units may be installed side by side.

The minimum allowable side clearance is 150mm and 100mm top and bottom.

Dime	ensions (m	ım)	Fixing point distance (mm)			Type of screws	Weight (kg)	
W	Н	D	X	Υ	D1	D2	NAO NAAO	26.6
257	550	398.5	170	515	12	6	M8-M10	36.6

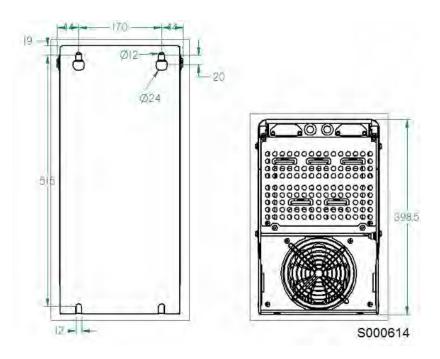


Figure 88: Dimensions and fixing points for the SU465

6.1.7.3. IP21 Kit

The SU465 may be provided with a special safety kit against top-down water dripping to get IP21 degree of protection. Consequently, the side dimensions become 30mm.

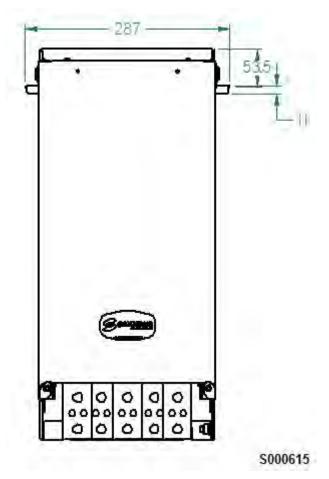


Figure 89: Overall dimensions when using IP21 kit

6.1.7.4. Through-panel Kit

The supply unit may be provided with the special through-panel kit for the segregation of the air flows.

Dime	ensions (m	ım)	Fixing point distance (mm)			Type of screws	Weight (kg)	
W	Н	D	X	Υ	X1	Y1	M8-M10	2
325	683	398.5	250	650	293	400	IVIO-IVI I U	۷

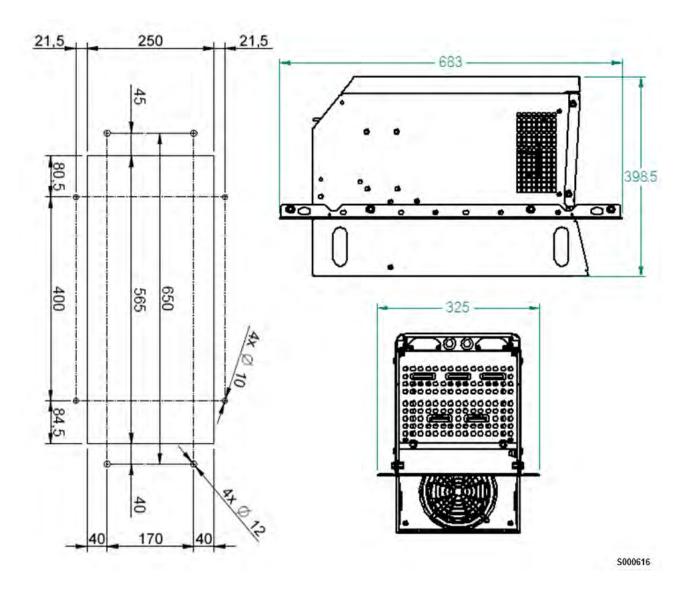


Figure 90: Dimensions and fixing points when using the through-panel kit for the SU465

6.1.7.5. NEMA1 Kit

The SU465 may be provided with the special NEMA1 kit against accidental contacts. This optional kit is to be installed directly on the supply unit case and provides protection against accidental contacts with the power terminals in the supply unit.

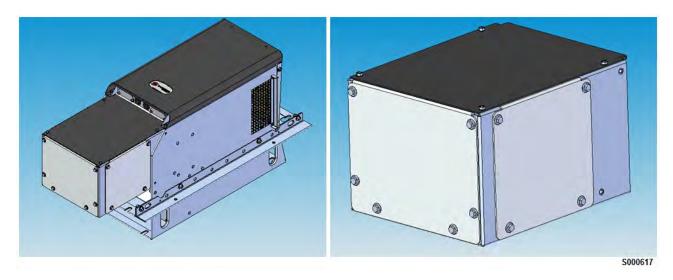


Figure 91: NEMA1 kit and kit installation on the SU465

The NEMA1 kit is provided with N.3 removable plates that may be drilled to suit the installer's needs in terms of cable paths to the mains and the unit to be power supplied.

The installer is responsible for the utilization of safe materials able to preserve the equipment's degree of protection. It is recommended that the cables do not enter into contact with sharp metal parts that may jeopardize isolation.

Kit dimensions (mm)			SU465 length + NEMA1 kit	Type of screws for mounting	Weight (kg)
W	Н	D	Н	MO	2.4
187	298	248	765	M8	3.4

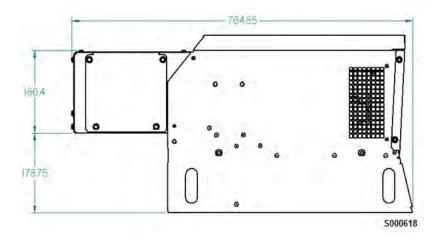


Figure 92: Overall dimensions when installing the NEMA1 kit

6.1.7.6. Power Terminals and Signal Terminals Layout

Power Wiring

The SU465 is to be connected to the drive as follows:

Decisive voltage class C according to EN 61800-5-1.

Terminal	Туре	Tightening Torque (Nm)	Connection cable cross-section mm ² (AWG/kcmils)	NOTES
R	Bar	30	240mm ² (500kcmils)	To be connected to phase R of the transformer
S	Bar	30	240mm ² (500kcmils)	To be connected to phase S of the transformer
T	Bar	30	240mm ² (500kcmils)	To be connected to phase T of the transformer
+	Bar	30	240mm ² (500kcmils)	To be connected to terminal 47/+ of the drive
_	Bar	30	240mm ² (500kcmils)	To be connected to terminal 49/– of the drive

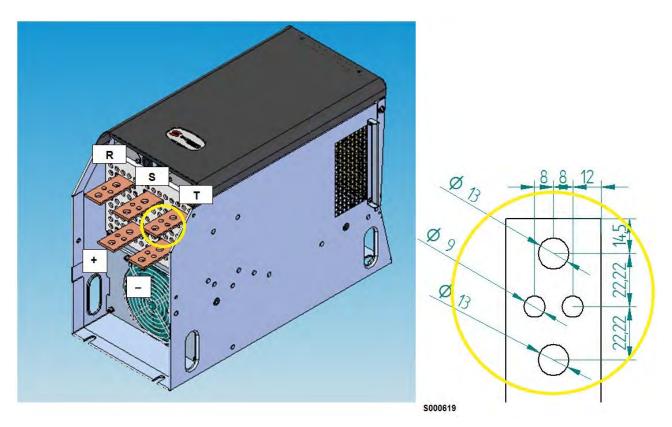
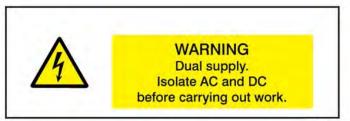


Figure 93: Power terminals

CAUTION

When the SU465 is used as a 12-phase rectifier, bars **47/D** and **47/+** in drives S41-42-51-52 are to be short-circuited.

CAUTION


When the SU465 is used as a supply unit, bars **47/D** and **47/+** in the drive are to be disconnected by removing the default bridge.

DANGER

DUAL POWER SUPPLY: The SU465 may be both AC supplied (input) and DC supplied (output) thanks to the parallel connection to the drive. Disconnect both sources (input AC power supply and parallel connection to the drive) before operating on the equipment.

S000625

DANGER

Once both AC power supply and DC power supply have been isolated, wait at least 20 minutes before operating on the DC-links to give the capacitors time to discharge.

6.1.7.7. Signal Connections

Each supply unit is provided with two DB9 connectors for the connection of the control signals. By way of connector CN1, located on the left side if seen frontally (see Figure 95), the device receives the control signals from the drive to be power supplied. Connector CN2 features a similar signal set for the cascade connection of an additional supply unit.

Connector CN1 – Connect terminal board M1 to the drive via a shielded DB9 cable, AWG26, provided with male DB9 terminal on the drive side and female DB9 terminal on the SU465.

Decisive voltage class A according to EN 61800-5.1

N.	Name	Description	I/Os	NOTES
1	12PHU	12-ph UNIT FITTED	0-24V	+24V available 0V n/available
2	PREC_M	Thyristor firing precharge (master)	0-24V	+24V firing failed; 0V: firing successful
3	Vrs	Vrs phase readout	±5V analog	Vrs/200 for 2T-4T Vrs/250 for 5T-6T
4	Vst	Vst phase readout	±5V analog	Vrs/200 for 2T-4T Vrs/250 for 5T-6T
5	VBOK	ON/OFF command for thyristor firing	0-24V	+24V for thyristor firing
6	+24V	24Vdc power supply	20W (in common with the drive 24V power supply)	
7	0V	0V	Control board zero volt	
8	PT_M	Thermoswitch (master)	0-24V	+24V thermoswitch open; 0V: thermoswitch OK
9	NTC_M	NTC readout (master)		NTC 10k polarized at 5V with 6k81

Connector CN2 – If required, connect terminal board M2 to the additional shielded DB9 connector, at least AWG26, with a male DB9 connector on the first SU465 and a DB9 female on the second SU465.

DECISIVE VOLTAGE CLASS A ACCORDING TO EN 61800-5.1

N.	Name	Description	I/Os	NOTES
1	18PHU	18-ph UNIT FITTED	0-24V	+24V available 0V n/available
2	PREC_S	Thyristor firing precharge (slave)	0-24V	+24V firing failed; 0V: firing successful
3	-			Not connected
4	-			Not connected
5	VВОК	ON/OFF command for thyristor firing	0-24V	+24V for thyristor firing
6	+24V	24Vdc power supply	ON/OFF command for thyristor firing	
7	0V	0V	24Vdc power supply	
8	PT_S	Thermoswitch (slave)	0-24V	+24V thermoswitch open; 0V: thermoswitch OK
9	NTC_S	NTC readout (slave)		NTC 10k polarized at 5V with 6k81

In the event of a 18-phase or more connection, an external 24V supply unit connected to pins 6 and 7 is required. 20W power is required for each additional unit.

The connection in parallel of more than one supply unit requires configuring the ES840/1 control board by changing the default settings of special-purpose jumpers. Those settings are given in the table below, based on the position of the supply unit in the device chain (first position, intermediate position, end position).

	SU465 in first position	SU465 in intermediate position	SU465 in end position
J1	ON	ON	ON
J2	ON	ON	ON
J3	OFF	OFF	ON
J4	OFF	OFF	ON
J5	ON	OFF	OFF
J6	ON	OFF	OFF

Figure 94: Position of the jumpers in the ES840/1 board

The configuration of jumpers J7-J8 depends on the operating voltage of the SU465.

	2T-4T	5T-6T
J7	1-2	2-3
J8	1-2	2-3

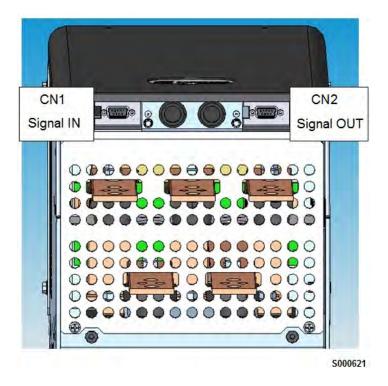


Figure 95: Signal terminal board

Figure 96: Example of a 9-pin shielded cable for signal connection

6.1.8. Wiring the SU465

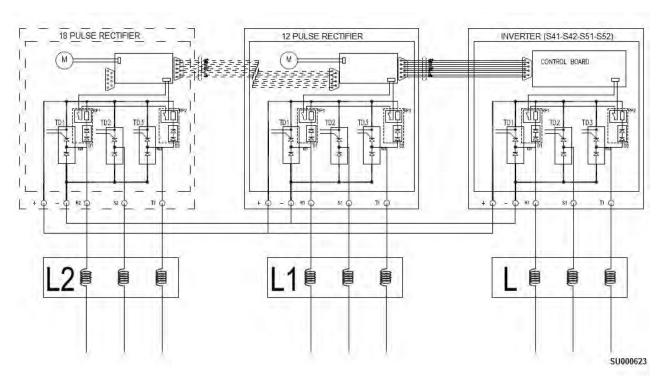


Figure 97: S41-S52 connections with 12-ph and 18-ph SU465

6.1.9. Cross-sections of the Power Cables and Sizes of the Protective Devices when the SU465 is Installed

The minimum requirements of the inverter cables and the protective devices needed to protect the system against short-circuits are given in the tables below. It is however recommended that the applicable regulations in force be observed; also check if voltage drops occur for cable links longer than 100m.

For the largest inverter sizes, special links with multiple conductors are provided for each phase. For example, 2x150 in the column relating to the cable cross-section means that two 150mm² parallel conductors are required for each phase.

Multiple conductors shall have the same length and must run parallel to each other, thus ensuring even current delivery at any frequency value. Paths having the same length but a different shape deliver uneven current at high frequency.

Also, do not exceed the tightening torque for the terminals to the bar connections. For connections to bars, the tightening torque relates to the bolt tightening the cable lug to the copper bar. The cross-section values given in the tables below apply to copper cables.

The links between the motor and the Penta drive must have the same lengths and must follow the same paths. Use 3-phase cables where possible.

Dimensioning depends on the configuration of the SU465 (12-phase connection or power supply unit – rectifier).

6.1.9.1. 12-phase Application

Voltage Class	Size	SINUS PENTA Model	Rated Inverter Current	Tightening Torque	Cable Cross- section to Mains and Motor Side	Fast Fuses (700V) + Disc. Switch	Magnetic Circuit Breaker	AC1 Contactor
lo/			Α	Nm	mm² (AWG/kcmils)	Α	Α	Α
		0180	150	10	95 (4/0AWG)	200	160	160
2T-4T	S41	0202	175	10	95 (4/0AWG)	250	200	250
21-41	341	0217	190	10	120 (250kcmils)	250	250	250
		0260	215	10	120 (250kcmils)	315	400	275
		0313	240	10	120 (250kcmils)	400	400	275
2T-4T	S51	0367	275	25-30	150 (300kcmils)	400	400	400
		0402	340	25-30	240 (500kcmils)	500	400	450
		0181	155	30	95 (4/0AWG)	200	200	250
5T-6T	S42	0201	165	30	95 (4/0AWG)	200	200	250
31-01	342	0218	180	30	120 (250kcmils)	250	250	250
		0259	200	30	120 (250kcmils)	250	250	250
		0290	225	30	150 (300kcmils)	315	400	275
5T-6T	S52	0314	250	30	185 (400kcmils)	400	400	400
31-01	332	0368	280	30	240 (500kcmils)	400	400	400
		0401	320	30	240 (500kcmils)	450	400	450

6.1.9.2. Supply Unit Application

Voltage Class	Rated Inverter Current	Tightening Torque	Cable Cross-section to Mains and Motor Side	Fast Fuses (700V) + Disc. Switch	Magnetic Circuit Breaker	AC1 Contactor
	Α	Nm	mm² (AWG/kcmils)	Α	Α	Α
2T-4T-5T-6T	465	50	2x150 (2x300kcmils)	500	630	500

6.1.10. Earth Bonding of the SU465

For the earth bonding of the SU465 and the transformer for the 12-phase application, please refer to the general instructions given in section Inverter and Motor Ground Connection.

6.1.11. Scheduled Maintenance of the SU465

For the SU465 scheduled maintenance, please refer to the general instructions given in section Inverter Scheduled Maintenance.

6.1.12. Inductors to be Applied to the Sinus Penta and the SU465

Dimensioning depends on the configuration of the SU465 (12-phase connection or power supply unit – rectifier).

6.1.12.1. 12-phase Application

Voltage Class	Sinus Penta Size	Sinus Penta Model	INPUT THREE-PHASE AC INDUCTOR
		0180	
2T-4T	S41	0202	IM0126244
21-41	341	0217	0.09mH-252Arms
		0260	
		0313	 - IM0126282
2T-4T	S51	0367	0.063mH–360Arms
		0402	0.0031111-300711113
		0181	
5T-6T	S42	0201	IM0127274
31-01	342	0218	0.12mH-325Arms
		0259	
		0290	
5T-6T	S52	0314	IM0127330
31-01	332	0368	0.096mH-415Arms
		0401	

6.1.12.2. Supply Unit Application

CAUTION

Please contact Elettronica Santerno if the supply unit SU465 is utilized as a rectifier (precharge circuit for DC-bus capacitors upstream of the DC voltage supply terminals).

6.2. Resistive Braking

When a large braking torque is required or the load connected to the motor is pulled (as for instance in lifting applications), the power regenerated by the motor is to be dissipated. This can be obtained either by dissipating energy to braking resistors (in that case a braking module is required), or by powering the inverter via the DC-bus using a system able to deliver energy to the mains. Both solutions are available.

The first solution is described below; for the second solution, please refer to the technical documentation pertaining to the Regenerative Inverter (see the Guide to the Regenerative Application).

The braking modules are integrated into the Sinus Penta up to S32 included; for greater sizes, the braking modules are to be externally installed. The resistors allowing dissipating the energy regenerated by the inverter are to be connected to the braking modules.

From size S05 to size S32, Sinus Penta inverters are supplied with a built-in braking module. The braking resistor is to be connected outside the inverter to terminal B and terminal + (see Power Terminals for S05–S52); properly set the parameters relating to the inverter braking (see the Sinus Penta's Programming Guide). External braking units are used for greater sizes; please refer to the relevant sections in this manual also for the description of the suitable braking resistors.

When choosing the braking resistor, consider the following:

- drive supply voltage (voltage class),
- · the braking resistor Ohm value
- the rated power of the resistor.

The voltage class and the Ohm value determine the instant power dissipated in the braking resistor and are relating to the motor power (see note below); the rated power determines the mean power to be dissipated in the braking resistor and is relating to the duty cycle of the equipment, i.e. to the resistor activation time in respect to the duty cycle full time (the duty cycle of the resistor is equal to the motor braking time divided by the equipment duty cycle).

It is not possible to connect resistors with a Ohm value lower than the min. value acknowledged by the inverter.

NOTE

The braking power required to reduce the speed of a rotating body is proportional to the total moment of inertia of the rotating mass, to the speed variation, to the absolute speed and is inversely proportional to the deceleration time required.

The following pages contain application tables stating the resistors to be used depending on the inverter model, the application requirements and the supply voltage. The braking resistor power is given as an approximate empirical value; the correct dimensioning of the braking resistor is based on the equipment duty cycle and the power regenerated during the braking stage.

6.2.1. Braking Resistors

NOTE

The wire cross-sections given in the table relate to one wire per braking resistor.

HOT SURFACE

The braking resistor case may reach 200°C based on the operating cycle.

CAUTION

The power dissipated by the braking resistors may be the same as the rated power of the connected motor multiplied by the braking duty-cycle; use a proper air-cooling system. Do not install braking resistors near heat-sensitive equipment or objects.

CAUTION

Do not connect to the inverter any braking resistor with an Ohm value lower than the value given in the tables.

6.2.1.1. Applications with DUTY CYCLE 10% - Class 2T

			В	RAKING RE	SISTORS		
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm2 (AWG)
	0007	25.0	56Ω-350W	IP55	Α	56	2.5(14)
	8000	25.0	2*56Ω-350W	IP55	В	28	2.5(14)
	0010	25.0	2*56Ω-350W	IP55	В	28	2.5(14)
S05	0013	18.0	2*56Ω-350W	IP55	В	28	2.5(14)
	0015	18.0	2*56Ω-350W	IP55	В	28	2.5(14)
	0016	18.0	3*56Ω-350W	IP55	В	18.7	2.5(14)
	0020	18.0	3*56Ω-350W	IP55	В	18.7	2.5(14)
	0023	15.0	15Ω-1100W	IP55	Α	15	4(12)
S12	0033	10.0	10Ω - $1500W$	IP54	Α	10	4(12)
	0037	10.0	10Ω-1500W	IP54	Α	10	4(12)
S15	0040	7.5	2*15Ω-1100W	IP55	Α	7.5	4(12)
313	0049	5.0	5Ω-4000W	IP20	Α	5.0	10(8)
	0060	5.0	5Ω-4000W	IP20	Α	5.0	10(8)
S20	0067	5.0	5Ω-4000W	IP20	Α	5.0	10(8)
320	0074	4.2	5Ω-4000W	IP20	Α	5.0	10(8)
	0086	4.2	5Ω-4000W	IP20	Α	5.0	10(8)
	0113	3.0	3.3Ω -8000W	IP20	Α	3.3	10(8)
S30	0129	3.0	3.3Ω-8000W	IP20	Α	3.3	10(8)
330	0150	2.5	3.3Ω-8000W	IP20	Α	3.3	10(8)
	0162	2.5	3.3Ω-8000W	IP20	Α	3.3	10(8)

Type of connection:

A - One resistor

B - Two or multiple parallel-connected resistors

CAUTION

6.2.1.2. Applications with DUTY CYCLE 20% - Class 2T

				BRAKING I	RESISTORS		
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm² (AWG)
	0007	25.0	2*100Ω-350W	IP55	В	50	2.5(14)
	8000	25.0	2*56Ω-350W	IP55	В	28	2.5(14)
	0010	25.0	2*56Ω-350W	IP55	В	28	2.5(14)
S05	0013	18.0	4*100Ω-350W	IP55	В	25	2.5(14)
	0015	18.0	4*100Ω-350W	IP55	В	25	2.5(14)
	0016	18.0	25Ω-1800W	IP54	Α	25	2.5(14)
	0020	18.0	25Ω-1800W	IP54	Α	25	2.5(14)
	0023	15.0	15Ω-2200W	IP54	Α	15	4(12)
S12	0033	10.0	2*25Ω-1800W	IP54	В	12.5	2.5(14)
	0037	10.0	2*25Ω-1800W	IP54	В	12.5	2.5(14)
S15	0040	7.5	2*15Ω-2200W	IP54	В	7.5	2.5(14)
313	0049	5	5Ω-4000W	IP20	Α	5	6(10)
	0060	5.0	5Ω-8000W	IP20	Α	5	10(8)
S20	0067	5.0	5Ω-8000W	IP20	Α	5	10(8)
320	0074	4.2	5Ω-8000W	IP20	Α	5	10(8)
	0086	4.2	5Ω-8000W	IP20	Α	5	10(8)
	0113	3.0	3.3Ω -12000W	IP20	Α	3.3	16(6)
S30	0129	3.0	3.3Ω-12000W	IP20	Α	3.3	16(6)
330	0150	2.5	3.3Ω-12000W	IP20	Α	3.3	16(6)
	0162	2.5	3.3Ω-12000W	IP20	Α	3.3	16(6)

Type of connection:

A - One resistor

B - Two or multiple parallel-connected resistors

CAUTION

6.2.1.3. Applications with DUTY CYCLE 50% - Class 2T

			BRA	KING RESIST	ORS		
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm ² (AWG)
	0007	25.0	50Ω-1100W	IP55	Α	50	2.5(14)
	8000	25.0	25Ω-1800W	IP54	Α	25	2.5(14)
	0010	25.0	25Ω-1800W	IP54	Α	25	2.5(14)
S05	0013	18.0	25Ω-4000W	IP20	Α	25	2.5(14)
	0015	18.0	25Ω-4000W	IP20	Α	25	2.5(14)
	0016	18.0	25Ω-4000W	IP20	А	25	2.5(14)
•	0020	18.0	20Ω-4000W	IP20	Α	20	4(12)
	0023	15.0	20Ω-4000W	IP20	Α	20	6(10)
S12	0033	10.0	10Ω-8000W	IP20	Α	10	10(8)
	0037	10.0	10Ω-8000W	IP20	А	10	10(8)
S15	0040	6.6	6.6Ω-12000W	IP20	А	6.6	16(6)
313	0049	6.6	6.6Ω-12000W	IP20	А	6.6	16(6)
	0060	5.0	6.6Ω-12000W	IP20	А	6.6	16(6)
620	0067	5.0	2*10Ω-8000W	IP20	В	5	10(8)
S20	0074	4.2	2*10Ω-8000W	IP20	В	5	10(8)
	0086	4.2	2*10Ω-8000W	IP20	В	5	10(8)
	0113	3.0	2*6.6Ω-12000W	IP20	В	3.3	16(6)
626	0129	3.0	2*6.6Ω-12000W	IP20	В	3.3	16(6)
S30	0150	2.5	3*10Ω-12000W	IP20	В	3.3	10(8)
	0162	2.5	3*10Ω-12000W	IP20	В	3.3	10(8)

Type of connection:

- A One resistor
- B Two or multiple parallel-connected resistors

CAUTION

6.2.1.4. Applications with DUTY CYCLE 10% - Class 4T

			BR	AKING RESIS	TORS		
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm ² (AWG)
	0005	50	75Ω-550W	IP33	Α	75	2.5(14)
	0007	50	75Ω-550W	IP33	Α	75	2.5(14)
S05	0009	50	50Ω-1100W	IP55	Α	50	2.5(14)
	0011	50	50Ω-1100W	IP55	Α	50	2.5(14)
	0014	50	50Ω-1100W	IP55	Α	50	2.5(14)
	0016	40	50Ω-1500W	IP54	Α	50	2.5(14)
	0017	40	50Ω-1500W	IP54	Α	50	2.5(14)
	0020	40	50Ω-1500W	IP54	Α	50	2.5(14)
S12	0025	20	25Ω-1800W	IP54	Α	25	4(12)
	0030	20	25Ω-1800W	IP54	Α	25	4(12)
	0034	20	20Ω-4000W	IP20	Α	20	4(12)
	0036	20	20Ω-4000W	IP20	Α	20	4(12)
S15	0040	15	15Ω-4000W	IP20	Α	15	6(10)
313	0049	10	15Ω-4000W	IP20	Α	15	6(10)
	0060	10	10Ω-8000W	IP20	Α	10	10(8)
S20	0067	10	10Ω-8000W	IP20	Α	10	10(8)
320	0074	7.5	10Ω-8000W	IP20	Α	10	10(8)
	0086	7.5	10Ω-8000W	IP20	Α	10	10(8)
	0113	6	6.6Ω-12000W	IP20	Α	6.6	10(8)
S30	0129	6	6.6Ω-12000W	IP20	Α	6.6	10(8)
330	0150	5	5Ω-16000W	IP20	Α	5	16(6)
	0162	5	5Ω-16000W	IP20	А	5	16(6)

Type of connection: A - One resistor

CAUTION

6.2.1.5. Applications with DUTY CYCLE 20% - Class 4T

			BR	AKING RES	SISTORS		
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm ² (AWG)
	0005	50	50Ω-1100W	IP55	Α	50	2.5(14)
	0007	50	50Ω-1100W	IP55	Α	50	2.5(14)
S05	0009	50	50Ω-1100W	IP55	Α	50	2.5(14)
	0011	50	50Ω-1500W	IP54	Α	50	2.5(14)
	0014	50	50Ω-1500W	IP54	Α	50	2.5(14)
	0016	40	50Ω-2200W	IP54	Α	50	2.5(14)
	0017	40	50Ω-2200W	IP54	Α	50	2.5(14)
	0020	40	50Ω-4000W	IP20	Α	50	2.5(14)
S12	0025	20	25Ω-4000W	IP20	Α	25	6(10)
	0030	20	25Ω-4000W	IP20	Α	25	6(10)
	0034	20	20Ω-4000W	IP20	Α	20	6(10)
	0036	20	20Ω-4000W	IP20	Α	20	6(10)
S15	0040	15	15Ω-8000W	IP23	Α	15	10(8)
313	0049	10	10Ω-12000W	IP20	Α	10	10(8)
	0060	10	10Ω-12000W	IP20	Α	10	16(6)
S20	0067	10	10Ω-12000W	IP20	Α	10	16(6)
320	0074	7.5	10Ω-16000W	IP23	Α	10	16(6)
	0086	7.5	10Ω-16000W	IP23	Α	10	16(6)
	0113	6	2*3.3Ω-8000W	IP20	С	6.6	16(6)
S30	0129	6	2*3.3Ω-8000W	IP20	С	6.6	16(6)
330	0150	5	2*10Ω-12000W	IP20	В	5	16(6)
	0162	5	2*10Ω-12000W	IP20	В	5	16(6)

Type of connection:

- A One resistor
- B Two or multiple parallel-connected resistors
- C Two series-connected resistors

CAUTION

6.2.1.6. Applications with DUTY CYCLE 50% - Class 4T

			BR <i>A</i>	KING RESIS	TORS		
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm ² (AWG)
	0005	50	50Ω-4000W	IP23	Α	50	4(12)
	0007	50	50Ω-4000W	IP23	Α	50	4(12)
S05	0009	50	50Ω-4000W	IP23	Α	50	4(12)
	0011	50	50Ω-4000W	IP23	Α	50	4(12)
	0014	50	50Ω-4000W	IP23	Α	50	4(12)
	0016	40	50Ω-8000W	IP23	Α	50	4(12)
	0017	40	50Ω-8000W	IP23	Α	50	4(12)
	0020	40	50Ω-8000W	IP23	Α	50	4(12)
S12	0025	20	20Ω-12000W	IP23	Α	20	10(8)
	0030	20	20Ω-12000W	IP23	Α	20	10(8)
	0034	20	20Ω-16000W	IP23	Α	20	10(8)
	0036	20	20Ω-16000W	IP23	Α	20	10(8)
S15	0040	15	15Ω-24000W	IP23	Α	15	16(6)
313	0049	10	15Ω-24000W	IP23	Α	15	16(6)
	0060	10	10Ω-24000W	IP23	Α	10	16(6)
S20	0067	10	10Ω-24000W	IP23	Α	10	16(6)
320	0074	7.5	2*15Ω-24000W	IP23	В	7.5	16(6)
-	0086	7.5	2*15Ω-24000W	IP23	В	7.5	16(6)
	0113	6	6Ω-64000W	IP23	Α	6	35(2)
S30	0129	6	6Ω-64000W	IP23	А	6	35(2)
330	0150	5	5Ω-64000W	IP23	Α	5	50(1/0)
	0162	5	5Ω-64000W	IP23	А	5	50(1/0)

Type of connection:

- A One resistor
- B Two or multiple parallel-connected resistors

CAUTION

6.2.1.7. Applications with DUTY CYCLE 10% - Class 5T

			В	RAKING RESIS	STOR		
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm ² (AWG)
	0003	120	250Ω-1100W	IP55	Α	250	10(8)
	0004	120	180Ω-1100W	IP55	Α	180	10(8)
	0006	60	120Ω-1800W	IP55	Α	120	10(8)
	0012	60	100Ω-2200W	IP55	Α	100	10(8)
S14	0018	60	82Ω-4000W	IP20	Α	82	10(8)
314	0019	40	60Ω-4000W	IP20	Α	60	10(8)
	0021	40	45Ω-4000W	IP23	Α	45	10(8)
	0022	25	45Ω-4000W	IP23	Α	45	10(8)
	0024	25	30Ω-4000W	IP23	Α	30	10(8)
	0032	20	22Ω-8000W	IP23	Α	22	10(8)
	0042	12	22Ω-8000W	IP23	Α	22	10(8)
S22	0051	12	18Ω-8000W	IP23	Α	18	10(8)
322	0062	12	15Ω-12000W	IP23	Α	15	10(8)
	0069	12	12Ω-12000W	IP23	Α	12	10(8)
	0076	8	10Ω-12000W	IP23	Α	10	16(6)
S32	8800	8	8.2Ω-16000W	IP23	Α	8.2	16(6)
332	0131	5	6.6Ω-24000W	IP23	Α	6.6	16(6)
	0164	5	5Ω-24000W	IP23	Α	5	16(6)

Type of connection:

A - One resistor

CAUTION

6.2.1.8. Applications with DUTY CYCLE 20% - Class 5T

			В	RAKING RESIS	STOR		
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm ² (AWG)
	0003	120	250Ω-1500W	IP55	Α	250	10(8)
	0004	120	180Ω-1500W	IP55	Α	180	10(8)
	0006	60	120Ω-4000W	IP20	Α	120	10(8)
	0012	60	100Ω-4000W	IP20	Α	100	10(8)
S14	0018	60	82Ω-4000W	IP23	Α	82	10(8)
314	0019	40	60Ω-4000W	IP23	Α	60	10(8)
	0021	40	45Ω-8000W	IP20	Α	45	10(8)
	0022	25	45Ω-8000W	IP23	Α	45	10(8)
	0024	25	30Ω-8000W	IP23	Α	30	10(8)
	0032	20	22Ω-12000W	IP23	Α	22	10(8)
	0042	12	22Ω-12000W	IP23	Α	22	10(8)
S22	0051	12	18Ω-12000W	IP23	Α	18	10(8)
322	0062	12	15Ω-16000W	IP23	Α	15	10(8)
	0069	12	12Ω-16000W	IP23	Α	12	10(8)
	0076	8	10Ω-24000W	IP23	Α	10	16(6)
S32	8800	8	8.2Ω-24000W	IP23	Α	8.2	16(6)
332	0131	5	6.6Ω-32000W	IP23	Α	6.6	25(3)
	0164	5	5Ω-48000W	IP23	Α	5	25(3)

Type of connection:

A- One resistor

CAUTION

6.2.1.9. Applications with DUTY CYCLE 50% - Class 5T

		BRAKING RESISTOR								
Size	Model	Min. Applicable Resistor (Ω)	Image: Protection of the		Wire cross- section mm ² (AWG)					
	0003	120	250Ω-2200W	IP55	Α	250	16(6)			
	0004	120	180Ω-4000W	IP20	Α	180	16(6)			
	0006	60	120Ω-4000W	IP23	Α	120	16(6)			
	0012	60	100Ω-4000W	IP23	Α	100	16(6)			
S14	0018	60	82Ω-8000W	IP20	Α	82	16(6)			
314	0019	40	60Ω-8000W	IP23	Α	60	16(6)			
	0021	40	45Ω-12000W	IP20	Α	45	16(6)			
	0022	25	45Ω-12000W	IP23	Α	45	16(6)			
	0024	25	30Ω-16000W	IP23	Α	30	16(6)			
	0032	20	22Ω-16000W	IP23	A 250 A 180 A 120 A 100 A 4 A 4 A 4 A 4 A 45 A 45	16(6)				
	0042	12	22Ω-24000W	IP23	Α	22	16(6)			
S22	0051	12	18Ω-24000W	IP23	Α	18	16(6)			
322	0062	12	15Ω-32000W	IP23	Α	15	16(6)			
	0069	12	12Ω-48000W	IP23 A 22 IP23 A 18 IP23 A 15	16(6)					
	0076	8	10Ω-48000W	IP23	Α	10	25(3)			
S32	8800	8	8.2Ω-64000W	IP23	Α	8.2	25(3)			
332	0131	5	6.6Ω-64000W	IP23	Α	6.6	50(1/0)			
	0164	5	2x10Ω-48000W	IP23	В	120 100 82 60 45 45 30 22 22 18 15 10 8.2 6.6	50(1/0)			

Type of connection:

- A One resistor
- B Two series-connected resistors

CAUTION

6.2.1.10. Applications with DUTY CYCLE 10% - Class 6T

		BRAKING RESISTOR							
Size	Model	Min. Applicable Resistor (Ω)	Туре	pe Degree of Protection Type of Connection Value (Ω) 1500W IP55 A 250 2200W IP55 A 180 2200W IP55 A 150 4000W IP20 A 120 000W IP20 A 82 000W IP23 A 60 000W IP23 A 60 000W IP23 A 45 000W IP23 A 30 000W IP23 A 30 000W IP23 A 30		Wire cross- section mm ² (AWG)			
	0003	150	250Ω-1500W	IP55	Α	250	10(8)		
	0004	150	180Ω-2200W	IP55	Α	180	10(8)		
	0006	80	150Ω-2200W	IP55	Α	150	10(8)		
	0012	80	120Ω-4000W	IP20	Α	120	10(8)		
S14	0018	80	82Ω-4000W	IP20	Α	82	10(8)		
314	0019	50	60Ω-4000W	IP23	Α	60	10(8)		
	0021	50	60Ω-4000W	IP23	Α	60	10(8)		
	0022	30	45Ω-4000W	IP23	Α	45	10(8)		
	0024	30	30Ω-8000W	IP23	Α	30	10(8)		
	0032	25	30Ω-8000W	V IP23 A 30 V IP23 A 30	10(8)				
	0042	15	22Ω-8000W	IP23	Α	22	10(8)		
S22	0051	15	18Ω-12000W	IP23	Α	18	10(8)		
322	0062	15	15Ω-12000W	IP23	Α	15	10(8)		
	0069	15	15Ω-12000W	IP23	A 250 A 180 A 150 A 120 A 82 A 60 A 60 A 30 A 30 A 22 A 18	10(8)			
	0076	10	10Ω-16000W	IP23	Α	10	16(6)		
622	8800	10	10Ω-24000W	IP23	Α	10	16(6)		
S32	0131	6	6.6Ω-24000W	IP23	Α	6.6	16(6)		
	0164	6	6Ω-32000W	IP23	Α	6	16(6)		

Type of connection:

A - One resistor

CAUTION

6.2.1.11. Applications with DUTY CYCLE 20% - Class 6T

		BRAKING RESISTOR								
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm² (AWG)			
	0003	150	250Ω-2200W	IP55	Α	250	10(8)			
	0004	150	180Ω-4000W	IP20	Α	on (Ω)	10(8)			
	0006	80	150Ω-4000W	IP20	Α		10(8)			
	0012	80	120Ω-4000W	IP23	Α		10(8)			
S14	0018	80	82Ω-4000W	IP23	Α	82	10(8)			
314	0019	50	60Ω-4000W	IP23	Α	60	10(8)			
	0021	50	60Ω-8000W	IP23	Α	60	10(8)			
	0022	30	45Ω-8000W	IP23	Α	45	10(8)			
	0024	30	30Ω-8000W	IP23	Α	30	10(8)			
	0032	25	30Ω-12000W	IP23	Α	pe of nection Value (Ω) A 250 A 180 A 150 A 120 A 82 A 60 A 45 A 30 A 22 A 18 A 15 A 15 A 10 A 6.6	10(8)			
	0042	15	22Ω-12000W	IP23	Α	22	10(8)			
S22	0051	15	18Ω-16000W	IP23	Α	18	10(8)			
322	0062	15	15Ω-16000W	IP23	Α	15	10(8)			
	0069	15	15Ω-16000W	IP23	Α	on (Ω) 250 180 150 120 82 60 60 45 30 30 22 18 15 10 10 6.6	10(8)			
	0076	10	10Ω-24000W	IP23	Α	10	16(6)			
S32	8800	10	10Ω-32000W	IP23	Α	10	16(6)			
332	0131	6	6.6Ω-48000W	IP23	Α	6.6	25(3)			
	0164	6	6Ω-48000W	IP23	А	6	25(3)			

Type of connection:

A - One resistor

CAUTION

6.2.1.12. Applications with DUTY CYCLE 50% - Class 6T

			BRAKING RESISTOR								
Size	Model	Min. Applicable Resistor (Ω)	Туре	Degree of Protection	Type of Connection	Value (Ω)	Wire cross- section mm² (AWG)				
	0003	150	250Ω-4000W	IP20	Α	value	16(6)				
	0004	150	180Ω-4000W	IP23	Α	180	16(6)				
	0006	80	150Ω-4000W	IP23	Α	150	16(6)				
	0012	80	120Ω-8000W	IP20	Α	r (Ω) r 250 180 150 120 82 60 60 45 30 30 22 18 15 15 10 10 6	16(6)				
S14	0018 80 820-8000W IP23	Α	82	16(6)							
314	0019	50	60Ω-8000W	IP23	Α	60	16(6)				
	0021	50	60Ω-12000W	IP23	Α	60	16(6)				
	0022	30	45Ω-16000W	IP23	Α	45	16(6)				
	0024	30	30Ω-16000W	IP23	Α	30	16(6)				
	0032	25	30Ω-24000W	IP23	A 250 A 180 A 150 A 120 A 82 A 60 A 60 A 45 A 30 A 30 A 22 A 18 A 15 A 15 A 10 A 10 C 6	16(6)					
	0042	15	22Ω-24000W	IP23	Α	n (Ω) 250 180 150 120 82 60 60 45 30 30 22 18 15 15 10 10 6	16(6)				
S22	0051	15	18Ω-32000W	IP23	Type of Connection A 250 A 180 A 150 A 120 A 82 A 60 A 60 A 60 A 45 A 30 A 30 A 22 A 18 A 15 A 10 A 10 C 6	16(6)					
322	0062	15	15Ω-48000W	IP23	Α	15	16(6)				
	0069	15	15Ω-48000W	IP23	Α	on (Ω) 250 180 150 120 82 60 60 45 30 30 22 18 15 15 10 10 6	16(6)				
	0076	10	10Ω-64000W	IP23	Α	10	25(3)				
Caa	8800	10	10Ω-64000W	IP23	Α	10	25(3)				
S32	0131	6	2x3Ω-48000W	IP23	С	6	50(1/0)				
	0164	6	2x3Ω-48000W	IP23	С	6	50(1/0)				

Type of connection:

- A One resistor
- C Two series-connected resistors

CAUTION

6.3. Braking Unit (BU200 2T-4T) for S41-S51 and S60-S60P

An external braking unit is available for sizes S60 2T-4T from S41 to S60P.

The BU200 is an Open Type Equipment – degree of protection IP00 – that can be installed inside another enclosure featuring degree of protection IP3X as a minimum requirement.

6.3.1. Delivery Check

Make sure that the equipment is not damaged and it complies with the equipment you ordered by referring to its front nameplate (see figure below).

If the equipment is damaged, contact the supplier or the insurance company concerned.

If the equipment does not comply with the one you ordered, please contact the supplier as soon as possible. If the equipment is stored before being started, make sure that temperatures range from $-25^{\circ}\text{C} \div +70^{\circ}\text{C}$ and that relative humidity is <95% (non-condensing).

The equipment guarantee covers any manufacturing defect. The manufacturer has no responsibility for possible damages due to the equipment transportation or unpacking. The manufacturer is not responsible for possible damages or faults caused by improper and irrational uses; wrong installation; improper conditions of temperature, humidity, or the use of corrosive substances. The manufacturer is not responsible for possible faults due to the equipment operation at values exceeding the equipment ratings and is not responsible for consequential and accidental damages.

The braking unit BU200 is covered by a two-year guarantee starting from the date of delivery.

6.3.1.1. Nameplate for BU200 2T-4T

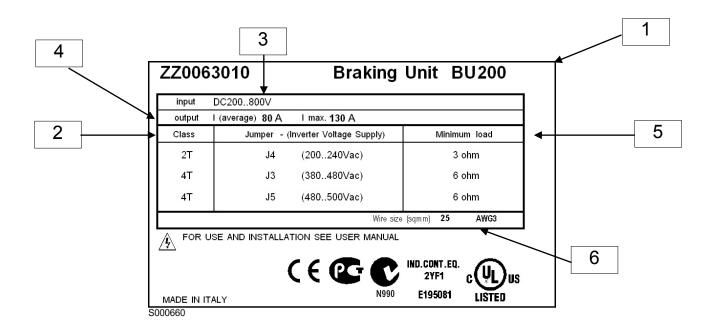


Figure 98: Nameplate for BU200 2T-4T

Numbered items in the figure above:

Model: BU200 – braking unit 2T-4T
 Voltage class: List of applicable voltage classes

3. Supply ratings: 200÷800 Vdc (DC supply voltage produced by the inverter terminals)

4. Output current: 80A (average) – continuous average current in output cables

130A (max.) – max. current in output cables (may be held for the time given in column "Max. Duration of Continuous Operation" in the resistors tables

below)

5. Min. load: Minimum value of the resistor to be connected to the output terminals (see

application tables below)

6. Cable cross-section: Dimensioning of the power cables

6.3.2. Operation

The basic size of the braking unit can be used with a braking resistor avoiding exceeding a max. instant current of 130 A, corresponding to a maximum braking power of approx. 97.5 kW (class 4T) and to an average power of 60 kW (class 4T). For applications requiring higher braking power values, multiple braking units can be parallel-connected in order to obtain a greater braking power based on the number of braking units.

To ensure that the overall braking power is evenly distributed to all braking units, configure one braking unit in MASTER mode and the remaining braking units in SLAVE mode, and connect the output signal of the MASTER unit (terminal 8 in connector M1) to the forcing input for all SLAVE braking units (terminal 4 in connector M1).

6.3.2.1. Configuration Jumpers

Jumpers located on the control board for BU200 are used for the configuration of the braking unit. Their positions and functions are as follows:

Jumper	Function
J1	If on, it configures the SLAVE operating mode
J2	If on, it configures the MASTER operating mode

NOTE

Either one of the two jumpers must always be "on". Avoid enabling both jumpers at a time.

Jumner	Function
	To be activated for class 4T inverters and mains voltage [380 Vac to 480 Vac]
	To be activated for class 2T inverters and mains voltage [200 Vac to 240 Vac]
J5	To be activated for class 4T inverters and mains voltage [481 Vac to 500 Vac]
J6	To be activated for special adjustment requirements

NOTE

One of the four jumpers must always be "ON". Avoid enabling two or more jumpers at a time.

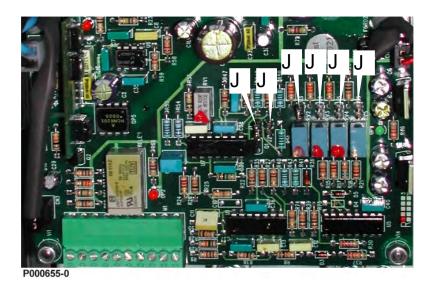


Figure 99: Positions of BU200 configuration jumpers

DANGER

Before changing jumper positions, remove voltage from the equipment and wait at least 20 minutes.

CAUTION

Never set jumpers to a voltage value lower than the inverter supply voltage. This will avoid continuous activation of the braking unit.

6.3.2.2. Adjusting Trimmers

Four trimmers are installed on the inverter control board. Depending on the jumper configuration, each trimmer allows the fine-tuning of the braking unit voltage threshold trip.

Jumper-trimmer matching is as follows:

Mains voltage [Vac]	Jumper	Trimmer	Minimum braking voltage [Vdc]	Rated braking voltage [Vdc]	Maximum braking voltage [Vdc]
200÷240 (2T)	J4	RV3	339	364	426
380÷480 (4T)	J3	RV2	700	764	826
481÷500 (4T)	J5	RV4	730	783	861
230÷500	J6	RV5	464	650	810

CAUTION

The maximum values in the table above are theoretical values for special applications only. Their use must be authorized by Elettronica Santerno. For standard applications, never change the factory-set rated value.



Figure 100: Positions of BU200 adjusting trimmers

6.3.2.3. Indicator LEDs

The indicator LEDs below are located on the front part of the braking units:

OK LED Normally "on"; the equipment is running smoothly. This LED turns off due to overcurrent or

power circuit failure.

B LED Normally off"; this LED turns on when the braking unit activates.

TMAX LED Normally "off"; this LED turns on when the thermoswitch located on the heat sink of the

braking unit trips; if overtemperature protection trips, the equipment is locked until

temperature drops below the alarm threshold.

Figure 101: Position of the Indicator LEDs

6.3.3. Ratings

	Max. Braking Current (A)		INVERTER SUPPLY VOLTAGE and JUMPER POSITIONS				
SIZE		Average Braking	200-240Vac (class 2T)	380-480Vac (class 4T)	481-500Vac (class 4T)		
SIZE		Current (A)	J4	J3	J5		
			MIN. BRAKING	. BRAKING RESISTOF	ING RESISTOR (Ω)		
BU200	130	80	3	6	6		

6.3.4. Installing the BU200

6.3.4.1. Environmental Requirements for the BU200 Installation, Storage and Transport

Maximo uma a uma um dim a ain	-10 to +40°C with no derating
Maximum surrounding air temperature	from +40°C to +55°C with a 2% derating of the rated current for each degree beyond +40°C.
Ambient temperatures for storage and transport	−25°C to +70°C.
	Pollution degree 2 or better (according to EN 61800-5-1).
Installation environment	Do not install in direct sunlight and in places exposed to conductive dust, corrosive gases, vibrations, water sprinkling or dripping (depending on IP ratings); do not install in salty environments.
Altitude	Max. altitude for installation 2000 m a.s.l. For installation above 2000 m and up to 4000 m, please contact Elettronica Santerno.
	Above 1000 m, derate the rated current by 1% every 100 m.
Operating ambient humidity	From 5% to 95%, from 1g/m³ to 25g/m³, non- condensing and non-freezing (class 3k3 according to EN 50178).
Storage ambient humidity	From 5% to 95%, from 1g/m³ to 25g/m³, non-condensing and non-freezing (class 1k3 according to EN 50178).
Ambient humidity during transport	Max. 95%; up to 60g/m³, condensation may appear when the equipment is not running (class 2k3 according to EN 50178).
Storage and operating atmospheric pressure	From 86 to 106 kPa (classes 3k3 and 1k4 according to EN 50178).
Atmospheric pressure during transport	From 70 to 106 kPa (class 2k3 according to EN 50178).

CAUTION

Ambient conditions strongly affect the inverter life. Do not install the equipment in places that do not have the above-mentioned ambient conditions.

6.3.4.2. Cooling System and Dissipated Power

The braking unit is provided with a heat sink reaching a max. temperature of 80°C. Make sure that the bearing surface for the braking unit is capable of withstanding high temperatures. Max. dissipated power is approx. 150 W and depends on the braking cycle required for the operating conditions of the load connected to the motor.

CAUTION

The max. temperature alarm for the braking unit shall be used as a digital signal to control the inverter stop.

6.3.4.3. Mounting

- The braking unit (BU200) must be installed in an upright position inside a cabinet;
- Make sure to allow a min. clearance of 5 cm on both types and 10 cm on top and bottom; use cable-glands to maintain IP20 rating;
- Fix the BU200 with four MA4 screws.

D	imensions (mn	m)		en fixing points m)	Type of screws	Weight (kg)	
W	Н	D	X	Υ	MA	4	
139	247	196	120	237	M4		

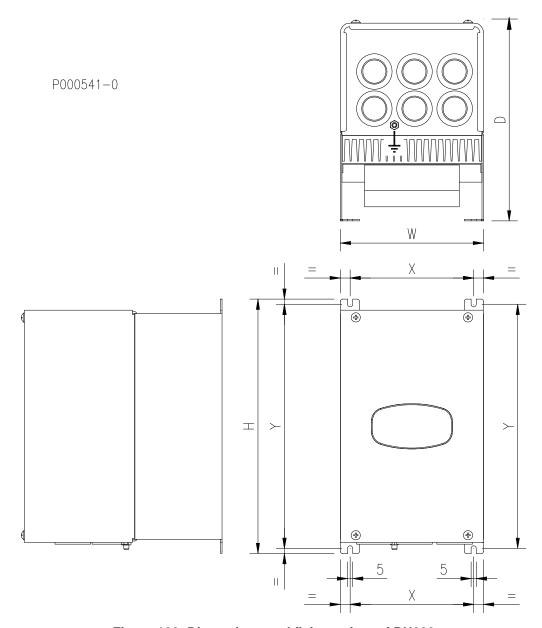


Figure 102: Dimensions and fixing points of BU200

6.3.4.4. Lay-Out of Power Terminals and Signal Terminals

Remove the cover of the braking unit to gain access to its terminal blocks. Just loosen the four fixing screws of the cover located on the front side and on the bottom side of the braking unit.

Loosen the fastening screws to slide off the cover from above.

Power terminals consist of copper bars, that can be reached through the three front holes.

Decisive voltage class C according to EN 61800-5-1.

Terminal	N.	Type of terminal	Cable cross-section (mm ²)	Connection
+	20	Copper bar	25	Inverter DC side connected to terminal +
В	21	Copper bar	See Resistors table	Connection to braking resistor
_	22	Copper bar	25	Inverter DC side connected to terminal –

Terminal block M1:

Decisive voltage class A according to EN 61800-5-1.

N.	Name	Description	Notes	Features	Cable cross- section (mm ²)
M1:1		Not used			
M1:2	0VE	Signal zero volt		Control board zero volt	0.5÷1
M1 : 3	Vin	Modulation input (0÷10 V)	To be used for special applications	Rin=10kΩ	0.5÷1
M1 : 4	Sin	Logic input for signal sent from Master	The SLAVE brakes if a signal > 6 V is sent	Max. 30V	0.5÷1
M1 : 8	: 8 Mout Digital output for command signal		High level output when the Master is braking	PNP output (0-15V)	0.5÷1
M1:9		Not used			
M1 :10		Not used			

Decisive voltage class C according to EN 61800-5-1.

M1 : 5	RL-NO	NO contact of "thermoswitch on" relay	The relay energizes		0.5÷1
M1 : 6	RL-C	Common of the contact of "thermoswitch on" relay	when an overtemperature alarm trips for	250Vac, 5A 30Vdc, 5A	0.5÷1
M1:7	RL-NC	NC contact of "thermoswitch on" relay	BU200		0.5÷1

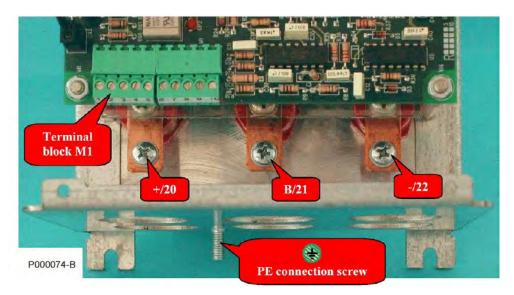


Figure 103: Terminals in BU200

6.3.4.5. Wiring

The braking unit must be connected to the inverter and the braking resistor.

The braking unit is connected directly to the inverter terminals (or copper bars for sizes greater than S32) of the DC voltage output, while the braking resistor must be connected to the inverter on one side and to the braking unit on the other side.

The wiring diagram is shown in the figure below:

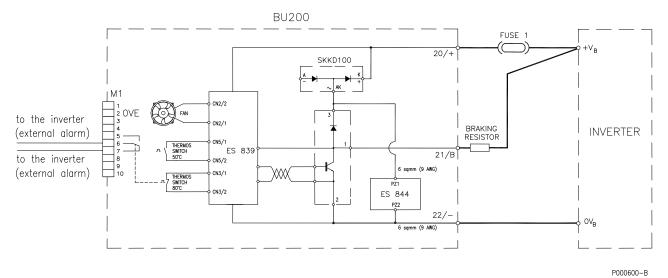


Figure 104: Connecting one BU200 to the inverter

NOTE

The braking resistor must be connected between terminal **B** of BU200 and terminal **+** of the inverter. In that way, no sudden variation in braking current occurs in the supply line between the inverter and BU200. In order to minimize electromagnetic radiated emissions when BU200 is operating, the loop obtained from the wiring connecting terminal **+** of the inverter, the braking resistor, terminals **B** and – of BU200 and terminal – of the inverter should be as short as possible.

NOTE

We recommend installing a 50A fuse with DC voltage of at least 700 Vdc (type URDC SIBA series, NH1 fuse) provided with a safety contact.

CAUTION

Link the safety contact of the fuse being used with the external alarm of BU200.

6.3.4.6. Master - Slave Connection

The Master-Slave connection must be used when multiple braking units are connected to the same inverter. An additional connection must be done between the Master output signal (terminal 8 in M1) and the Slave input signal (terminal 4 in M1); zero volt of the signal connector in the Master module (terminal 2 in M1) must be connected to zero volt of the signal connector in the Slave module (terminal 2 in M1).

The connection of more than two modules must always be done by configuring one module like a master and the other modules like slaves. Use configuration jumpers accordingly.

The max. temperature alarm of the braking unit must be used as a digital signal to control the inverter stop. All contacts (voltage-free contacts) in all braking modules may be series-connected as shown in the diagram below:

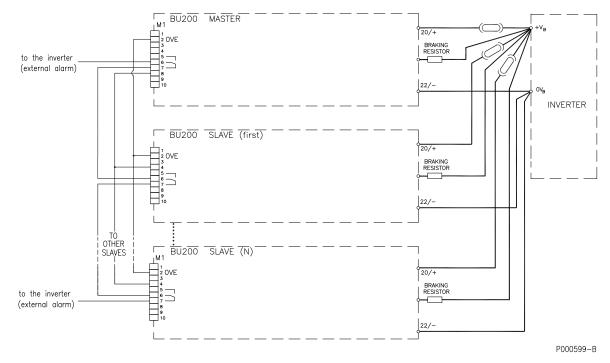


Figure 105: Master - Slave multiple connection

NOTE

NEVER connect signal zero volt (terminal 2 in M1) to zero volt of the inverter power supply voltage (–).

NOTE

We recommend installing a 50A fuse with DC current of at least 700 Vdc (type URDC SIBA series, NH1 fuse) provided with a safety contact.

CAUTION

Link the safety contact of the fuse being used with the external alarm of BU200.

6.3.5. Earth Bonding of the BU200

For the earth bonding of the BU200, please refer to the general instructions given in section Inverter and Motor Ground Connection.

6.3.6. Scheduled Maintenance of the BU200

For the scheduled maintenance of the BU200, please refer to the general instructions given in section Inverter Scheduled Maintenance.

DANGER

Once power supply has been cut off from the drive connected to the BU200, wait at least 20 minutes before operating on the DC circuits to give the capacitors time to discharge.

6.3.7. Braking Resistors for BU200 2T

Refer to the tables below for the connection of the braking resistors.

	Δ	
		\
\angle		$_{-}$

NOTE

The wire cross-sections given in the table relate to one wire per braking resistor.

CAUTION

The cables of the braking resistors shall have insulation features and heat-resistance features suitable for the application. The minimum rated voltage of the cables must be 450/700V.

HOT SURFACE Based on the functioning cycle, the surface of the braking resistors may reach 200°C.

CAUTION

The power dissipated by the braking resistors may be the same as the rated power of the connected motor multiplied by the braking duty-cycle; use a proper air-cooling system. Do not install braking resistors near heat-sensitive equipment or objects.

CAUTION

Do not connect to the inverter any braking resistor with an Ohm value lower than the value given in the tables.

6.3.7.1. Applications with DUTY CYCLE 10% - Class 2T

		Braking Unit	Braking Resistors							
Sinus Size Penta Model	Penta			Resistors to be used				Value	Wire Cross- section	
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	connection	(Ω)	mm ² (AWG/kcmils)	
	0180	2	2	3.3	8	IP20	М	1.65	10(8)	
S41	0202	2	2	3.3	8	IP20	M	1.65	10(8)	
341	0217	3	3	3.3	8	IP20	N	1.1	10(8)	
	0260	3	3	3.3	8	IP20	Ν	1.1	10(8)	
	0313	4	4	3.3	8	IP20	0	0.82	10(8)	
S51	0367	5	5	3.3	8	IP20	Р	0.66	10(8)	
	0402	5	5	3.3	8	IP20	Р	0.66	10(8)	
S60	0457	6	6	3.3	8	IP20	Q	0.55	10(8)	
560	0524	6	6	3.3	8	IP20	Q	0.55	10(8)	

6.3.7.2. Applications with DUTY CYCLE 20% - Class 2T

	Sinus Penta Model	Braking Unit	Braking Resistors							
Size			Resistors to be used				Type of	Value	Wire Cross- section	
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	connection	(Ω)	mm ² (AWG/kcmils)	
	0180	2	2	3.3	8	IP20	M	1.65	16(6)	
S41	0202	2	2	3.3	8	IP20	М	1.65	16(6)	
341	0217	3	3	3.3	12	IP20	N	1.1	16(6)	
	0260	3	3	3.3	12	IP20	N	1.1	16(6)	
	0313	4	4	3.3	12	IP20	0	0.82	16(6)	
S51	0367	5	5	3.3	12	IP20	Р	0.66	16(6)	
	0402	5	5	3.3	12	IP20	Р	0.66	16(6)	
S60	0457	6	6	3.3	12	IP20	Q	0.55	16(6)	
300	0524	6	6	3.3	12	IP20	Q	0.55	16(6)	

6.3.7.3. Applications with DUTY CYCLE 50% - Class 2T

		Braking Unit	Braking Resistors							
Size	Sinus Penta Model		Resistors to be used				Type of	Value	Wire Cross- section	
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	connection	(Ω)	mm ² (AWG/kcmils)	
	0180	2	4	6.6	12	IP20	V	1.65	16(6)	
S41	0202	2	4	6.6	12	IP20	V	1.65	16(6)	
341	0217	3	6	6.6	12	IP20	X	1.1	16(6)	
	0260	3	6	6.6	12	IP20	X	1.1	16(6)	
	0313	4	8	6.6	12	IP20	Y	0.82	16(6)	
S51	0367	5	10	6.6	12	IP20	W	0.66	16(6)	
	0402	5	10	6.6	12	IP20	W	0.66	16(6)	
S60	0457	6	12	6.6	12	IP20	Z	0.55	16(6)	
300	0524	6	12	6.6	12	IP20	Z	0.55	16(6)	

M-Two units, each of them including a braking module connected to its braking resistor

N-Three units, each of them including a braking module connected to its braking resistor

O-Four units, each of them including a braking module connected to its braking resistor

P-Five units, each of them including a braking module connected to its braking resistor

Q-Six units, each of them including a braking module connected to its braking resistor

V-Two units, each of them including a braking module connected to two parallel-connected braking resistors X-Three units, each of them including a braking module connected to two parallel-connected braking resistors

Y-Four units, each of them including a braking module connected to two parallel-connected braking resistors W-Five units, each of them including a braking module connected to two parallel-connected braking resistors Z-Six units, each of them including a braking module connected to two parallel-connected braking resistors

6.3.8. Braking Resistors for BU200 4T

NOTE

The wire cross-sections given in the table relate to one wire per braking resistor.

CAUTION

The cables of the braking resistors shall have insulation features and heat-resistance features suitable for the application. The minimum rated voltage of the cables must be 0.6/1kV.

HOT SURFACE Based on the functioning cycle, the surface of the braking resistors may reach 200°C .

CAUTION

The power dissipated by the braking resistors may be the same as the rated power of the connected motor multiplied by the braking duty-cycle; use a proper air-cooling system. Do not install braking resistors near heat-sensitive equipment or objects.

CAUTION

Do not connect to the inverter any braking resistor with an Ohm value lower than the value given in the tables.

6.3.8.1. Applications with DUTY CYCLE 10% - Class 4T

Size F		Braking Unit	Braking Resistors							
	Sinus Penta Model		Resistors to be used				Type of	Value	Wire Cross- section	
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection		(Ω)	mm ² (AWG/kcmils)	
	0180	2	2	6.6	12	IP20	М	3.3	16(6)	
S41	0202	2	2	6.6	12	IP20	M	3.3	16(6)	
341	0217	3	3	6.6	12	IP20	N	2.2	16(6)	
	0260	3	3	6.6	12	IP20	N	2.2	16(6)	
	0313	3	3	6.6	12	IP20	N	2.2	16(6)	
S51	0367	4	4	6.6	12	IP20	0	1.65	16(6)	
	0402	4	4	6.6	12	IP20	0	1.65	16(6)	
S60	0457	4	4	6.6	12	IP20	0	1.65	16(6)	
200	0524	5	5	6.6	12	IP20	Р	1.32	16(6)	
S60P	0598P	6	6	6.6	12	IP20	Q	1.1	16(6)	

6.3.8.2. Applications with DUTY CYCLE 20% - Class 4T

Size	Sinus Penta Model	Braking Unit	Braking Resistors								
			Resistors to be used				Type of	Value	Wire Cross- section		
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm ² (AWG/kcmils)		
	0180	2	2	6.6	24	IP23	M	3.3	16(6)		
S41	0202	2	2	6.6	24	IP23	М	3.3	16(6)		
341	0217	3	3	6.6	24	IP23	N	2.2	16(6)		
	0260	3	3	6.6	24	IP23	N	2.2	16(6)		
	0313	3	3	6.6	24	IP23	N	2.2	16(6)		
S51	0367	4	4	6.6	24	IP23	0	1.65	16(6)		
	0402	4	4	6.6	24	IP23	0	1.65	16(6)		
S60	0457	4	4	6.6	24	IP23	0	1.65	16(6)		
300	0524	5	5	6.6	24	IP23	Р	1.32	16(6)		
S60P	0598P	6	6	6.6	24	IP23	Q	1.1	16(6)		

6.3.8.3. Applications with DUTY CYCLE 50% - Class 4T

Size	Sinus Penta Model	Braking Unit	Braking Resistors							
			Resistors to be used				Type of	Value	Wire Cross- section	
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm ² (AWG or kcmils)	
	0180	3	3	10	24	IP23	N	3.3	16(6)	
S41	0202	3	3	10	24	IP23	N	3.3	16(6)	
341	0217	4	4	10	24	IP23	0	2.5	16(6)	
	0260	4	4	10	24	IP23	0	2.5	16(6)	
	0313	5	5	10	24	IP23	Р	2.0	16(6)	
S51	0367	6	6	10	24	IP23	Q	1.7	16(6)	
	0402	7	7	10	24	IP23	R	1.4	16(6)	
860	0457	7	7	10	24	IP23	R	1.4	16(6)	
S60	0524	8	8	10	24	IP23	S	1.25	16(6)	
S60P	0598P	8	8	10	24	IP23	S	1.25	16(6)	

M-Two units, each of them including a braking module connected to its braking resistor

N-Three units, each of them including a braking module connected to its braking resistor

 $\hbox{O-Four units, each of them including a braking module connected to its braking resistor}\\$

P-Five units, each of them including a braking module connected to its braking resistor

Q-Six units, each of them including a braking module connected to its braking resistor

R-Seven units, each of them including a braking module connected to its braking resistor

S-Eight units, each of them including a braking module connected to its braking resistor

6.4. Braking Units for S42–S52 (BU600 5T-6T)

A braking unit is available for sizes S42–S52 (BU600 5T-6T). This braking unit must not be used for inverter sizes other than the ones above.

The BU600 is an Open Type Equipment – degree of protection IP00 – that can be installed inside another enclosure featuring degree of protection IP3X as a minimum requirement.

6.4.1. Delivery Check

Make sure that the equipment is not damaged and that it complies with the equipment you ordered by referring to the nameplate located on the inverter front part (see figure below). If the equipment is damaged, contact the supplier or the insurance company concerned. If the equipment does not comply with the one you ordered, please contact the supplier as soon as possible.

If the equipment is stored before being started, make sure that temperatures range from –25°C to +70°C and that relative humidity is <95% (non-condensing).

The equipment guarantee covers any manufacturing defect. The manufacturer has no responsibility for possible damages occurred while shipping or unpacking the equipment. The manufacturer is not responsible for possible damages or faults caused by improper and irrational uses; wrong installation; improper conditions of temperature, humidity, or the use of corrosive substances. The manufacturer is not responsible for possible faults due to the equipment operation at values exceeding the equipment ratings. The manufacturer is not responsible for consequential and accidental damages.

The braking unit is covered by a two-year guarantee starting from the date of delivery.

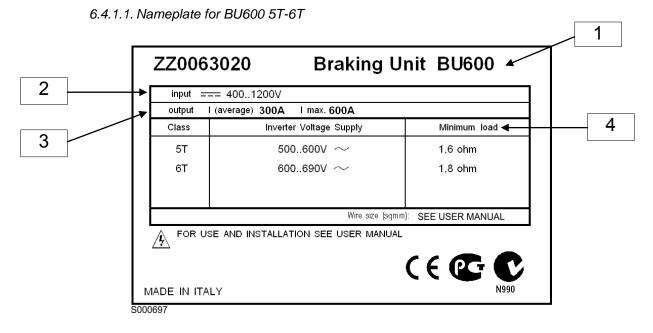


Figure 106: Nameplate for BU600 5T-6T

1. Model: BU600 – Braking module 5T-6T

2. Supply ratings: DC supply voltage deriving directly from the inverter terminals: 400 to 1200

Vdc for BU600 5-6T

3. Output current: 300A (average) – continuous average current in output cables

600A (max.) – max. current in output cables (may be held for all the time given in column "Max. Duration of Continuous Operation" in the resistors

tables below)

4. Min. load: Minimum value of the resistor to be connected to the output terminals (see

application tables below)

6.4.2. Operating Mode

The braking module is powered and controlled directly by the inverter.

The signals on terminal M1 of the braking module are to be connected to the signals on the BRAKE connector of the inverter using the cable supplied.

Figure 107: BRAKE connector supplied with the Sinus Penta

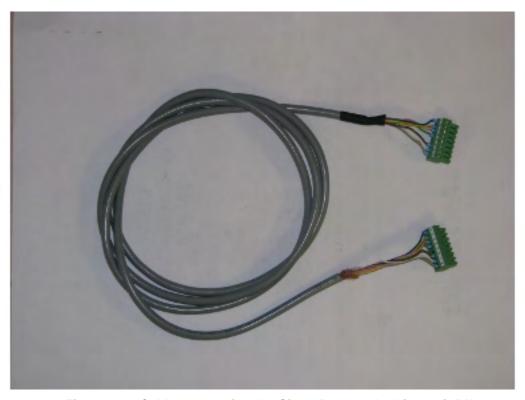


Figure 108: Cable connecting the Sinus Penta to braking unit BU600

S000136

S000134

The following diagnostic LEDs are provided:

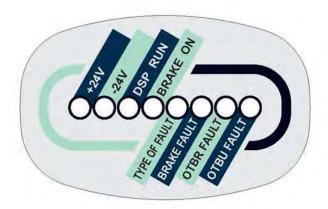


Figure 109: Diagnostic LEDs

+24V, -24V: Both "on" when the braking unit is powered on

DSP RUN [*]: "On" when the on-board microcontroller is on

BRAKE ON: "On" when the braking IGBT is ON

TYPE OF FAULT [*]: Code of the active fault

BRAKE FAULT: "On" when a fault occurs; it turns off only when the RESET input in terminal board M2 is activated.

OTBR FAULT: "On" when the thermoswitch trips (it comes on in conjunction with the BRAKE FAULT LED). It turns off when the fault condition is reset.

OTBU FAULT: IGBT thermal protection tripped (it comes on in conjunction with the BRAKE FAULT LED). It turns off when the fault condition is reset.

[*] **NOTE** This function is not available.

6.4.3. Specifications

MODEL	(A) Current (A)		Penta Supply Voltage	Min. Braking Resistor (Ω)	Power Dissipated (at Average Braking Current) (W)
BU600 5T-6T	600	300	500-600Vac	1.6	700
BU600 5T-6T	600	300	600-690Vac	1.8	700

6.4.4. Installing the BU600

6.4.4.1. Environmental Requirements for the BU600 Installation, Storage and Transport

	40.1 . 4000 . ''.			
Maximum surrounding air	−10 to +40°C with no derating			
temperature	From +40°C to +55°C with a 2% derating of the rated current for each degree beyond +40°C.			
Ambient temperatures for storage and transport	–25°C to +70°C			
	Pollution degree 2 or better (according to EN 61800-5-1).			
Installation environment	Do not install in direct sunlight and in places exposed to conductive dust, corrosive gases, vibrations, water sprinkling or dripping; do not install in salty environments.			
Altitude	Max. altitude for installation 2000 m a.s.l. For installatio above 2000 m and up to 4000 m, please contact Elettronic Santerno.			
	Above 1000 m, derate the rated current by 1% every 100 m.			
Operating ambient humidity	From 5% to 95%, from 1g/m³ to 25g/m³, non-condensing and non-freezing (class 3k3 according to EN 50178).			
Storage ambient humidity	From 5% to 95%, from 1g/m³ to 25g/m³, non-condensing and non-freezing (class 1k3 according to EN 50178).			
Ambient humidity during transport	Max. 95%, up to 60g/m³; condensation may appear when the equipment is not running (class 2k3 according to EN 50178).			
Storage and operating atmospheric pressure	From 86 to 106 kPa (classes 3k3 and 1k4 according to EN 50178).			
Atmospheric pressure during transport	From 70 to 106 kPa (class 2k3 according to EN 50178).			

CAUTION

Ambient conditions strongly affect the inverter life. Do not install the equipment in places that do not have the above-mentioned ambient conditions.

6.4.4.2. Mounting the Braking Unit

The braking unit BU600/BU700 must be installed in upright position on the left of the inverter inside a cabinet. Its overall dimensions and fixing points are given in the figure below.

Dime	ensions (m	ım)		Fixing	Type of Screws	Weight (kg)		
W	Н	D	Х	Y	D1	D2	M8-M10	72
248	881.5	399	170	845	12	24	IVIO-IVI I U	

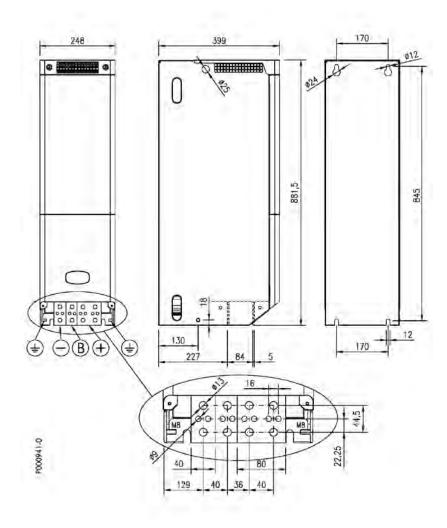


Figure 110: Dimensions and fixing points of braking unit BU600

S000157

6.4.4.3. Lay-Out of Power Terminals and Signal Terminals

Power connections

Link the braking module to the inverter and to the braking resistor as described below.

Decisive voltage class C according to EN 61800-5-1.

Terminal	Туре	Tightening Torque (Nm)	Connection Bar Cross- section mm ² (AWG/kcmils)	NOTES
+	Bus bar	30	240 (500kcmils)	To be connected to terminal 47/+ of the inverter and to one terminal of the braking resistor
В	Bus bar	30	See Resistors Table	To be connected to the remaining terminal of the braking resistor
_	Bus bar	30	240 (500kcmils)	To be connected to terminal 49/– of the inverter

Figure 111: Power terminals

SINUS PENTA

Signal connections

Terminals M1 – Connect to the inverter using the cable supplied. Decisive voltage class A according to EN 61800-5-1.

N.	Name	Description	I/O Features	NOTES	Cable Cross- section Fitting the Terminal mm ² (AWG/kcmils)	Tightening Torque (Nm)
1	BRAKE	Braking module signal command	0-24V (active at +24V)	to be connected to terminal 1 in the brake terminals of the inverter using the cable supplied	0.25÷1.5mm ² (AWG 24-16)	0.22-0.25
2	0V	Ground	0V	to be connected to terminal 2 in the brake terminals of the inverter using the cable supplied	0.25÷1.5mm ² (AWG 24-16)	0.22-0.25
3	BRERR	Not available	=	-	-	-
4	BU	Braking module fitted	0-24V (0V with braking module fitted)	to be connected to terminal 4 in the brake terminals of the inverter using the cable supplied	0.25÷1.5mm ² (AWG 24-16)	0.22-0.25
5	SLAVE	Not available	-	-	-	-
6	0V	Ground	0V	to be connected to terminal 6 in the brake terminals of the inverter using the cable supplied	0.25÷1.5mm ² (AWG 24-16)	0.22-0.25
7	CANL	Not available	-	-	-	-
8	CANH	TVOL AVAIIADIC	-	-	-	-

Terminals M2 Decisive voltage class A according to EN 61800-5-1.

N.	Name	Description	I/O Features	NOTES	Cable Cross- section Fitting the Terminal mm ² (AWG/kcmils)	Tightening Torque (Nm)
9	24VE	Auxiliary 24V voltage generated internally to the braking module	24V 100mA	Available to send the Reset signal	0.25÷1.5mm ² (AWG 24-16)	0.22-0.25
10	RESET	Braking module fault reset command	0-24V (active at 24V)	To be connected to +24VE by means of a push-button for fault reset	0.25÷1.5mm ² (AWG 24-16)	0.22-0.25
11	24VE	Auxiliary 24V voltage generated internally to the braking module	24V 10mA	To be connected to the thermoswitch in the braking resistor	0.25÷1.5mm ² (AWG 24-16)	0.22-0.25
12	PTR	Input for the braking resistor thermoswitch	0-24V (with +24V braking resistor OK)	To be connected to the thermoswitch in the braking resistor	0.25÷1.5mm ² (AWG 24-16)	0.22-0.25

Terminals M3 (unavailable functions)

Decisive voltage class C according to EN 61800-5-1.

N.	Name	Description	I/O Features	NOTES	Cable Cross- section Fitting the Terminal mm ² (AWG/kcmils)	Tightening Torque (Nm)
13	RL1-NC	N/A			-	-
14	RL1-C	N/A	-	-	-	-
15	RL1-NO	N/A			-	-

Terminals M4 (unavailable functions)

Decisive voltage class C according to EN 61800-5-1.

N.	Name	Description	I/O Features	NOTES	Cable Cross- section Fitting the Terminal mm ² (AWG/kcmils)	Tightening Torque (Nm)
16	RL2-NC	N/A			=	-
17	RL2-C	N/A	-	-	-	-
18	RL2-NO	N/A			-	-

Figure 112: Signal terminals

- Serial port [*]
 M1 BRAKE terminals
- 3. M2 Reset signal
- 4. M3 [*]
- 5. M4 [*]

NOTE [*]

Unavailable function.

6.4.4.4. Wiring Diagram

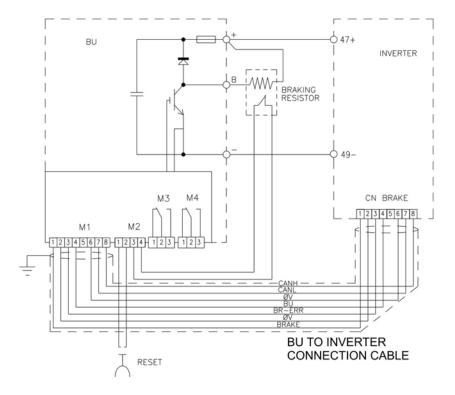


Figure 113: Wiring diagram for S42-S52 with braking unit BU600

6.4.5. Earth Bonding of the BU600

For the earth bonding of the BU600, please refer to the general instructions given in section Inverter and Motor Ground Connection.

6.4.6. Scheduled Maintenance of the BU600

For the scheduled maintenance of the BU600, please refer to the general instructions given in section Inverter Scheduled Maintenance.

DANGER

Once power supply has been cut off from the drive connected to the BU600, wait at least 20 minutes before operating on the DC circuits to give the capacitors time to discharge.

6.4.7. Braking Resistors to be applied to BU600 5T-6T

NOTE

The wire cross-sections given in the table relate to one wire per braking resistor.

HOT SURFACE Based on the functioning cycle, the surface of the braking resistor may reach 200°C.

CAUTION

The power dissipated by the braking resistors may be the same as the rated power of the connected motor multiplied by the braking duty-cycle; use a proper air-cooling system. Do not install braking resistors near heat-sensitive equipment or objects.

CAUTION

Do not connect to the inverter any braking resistor with an Ohm value lower than the value given in the tables.

6.4.7.1. Applications with DUTY CYCLE 10% - Class 5T

	Model	Braking Unit	Braking Resistors							
SIZE			Resistors to be used				Type of	Value	Wire Cross- section	
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG/kcmils)	
	0181	1	1	4.2	32	IP23	Α	4.2	25(3)	
S42	0201	1	1	3.6	32	IP23	Α	3.6	35(2)	
342	0218	1	1	3.6	32	IP23	Α	3.6	35(2)	
	0259	1	1	3	32	IP23	Α	3.0	35(2)	
	0290	1	1	3	32	IP23	Α	3.0	70(2/0)	
S52	0314	1	1	2.4	48	IP23	Α	2.4	70(2/0)	
332	0368	1	1	2.4	48	IP23	Α	2.4	70(2/0)	
	0401	1	1	1.8	64	IP23	Α	1.8	95(4/0)	

6.4.7.2. Applications with DUTY CYCLE 20% - Class 5T

SIZE	Model	Braking	Braking Resistors							
		Unit	Resistors to be used				Type of	Value	Wire Cross- section	
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)	
	0181	1	1	4.2	48	IP23	Α	4.2	50(1/0)	
S42	0201	1	1	3.6	64	IP23	Α	3.6	50(1/0)	
342	0218	1	2	6	32	IP23	В	3.0	25(3)	
	0259	1	2	6	32	IP23	В	3.0	25(3)	
	0290	1	2	6	32	IP23	В	3.0	25(3)	
S52	0314	1	2	5	48	IP23	В	2.5	35(2)	
332	0368	1	2	5	48	IP23	В	2.5	35(2)	
	0401	1	2	3.6	64	IP23	В	1.8	50(1/0)	

6.4.7.3. Applications with DUTY CYCLE 50% - Class 5T

	Model	Braking Unit	Braking Resistors							
SIZE			Resistors to be used				Type of	Value	Wire Cross- section	
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection		(Ω)	mm² (AWG/kcmils)	
	0181	1	4	4.2	32	IP23	D	4.2	35(2)	
S42	0201	1	4	3.6	48	IP23	D	3.6	50(1/0)	
342	0218	1	4	3.6	48	IP23	D	3.6	50(1/0)	
	0259	1	4	3	48	IP23	D	3.0	70(2/0)	
	0290	1	4	2.4	48	IP23	D	2.4	70(2/0)	
S52	0314	1	4	2.4	48	IP23	D	2.4	70(2/0)	
332	0368	1	4	2.4	64	IP23	D	2.4	70(2/0)	
	0401	1	4	1.8	64	IP23	D	1.8	95(4/0)	

Type of connection:

- A One resistor
- B Two or more parallel-connected resistors
- D Four resistors (parallel connection of two series of two resistors)

CAUTION

The cables of the braking resistors shall have insulation features and heatresistance features suitable for the application. The minimum rated voltage of the cables must be 0.6/1kV.

6.4.7.4. Applications with DUTY CYCLE 10% - Class 6T

SIZE	Model	Braking	Braking Resistor							
		Unit		Resistors to I	be used	Type of	Value	Wire Cross- section		
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)	
	0181	1	1	5	32	IP23	Α	5.0	25(3)	
S42	0201	1	1	3.6	32	IP23	Α	3.6	35(2)	
342	0218	1	1	3.6	32	IP23	Α	3.6	35(2)	
	0259	1	1	3.6	48	IP23	Α	3.6	70(2/0)	
	0290	1	1	3	48	IP23	А	3.0	70(2/0)	
S52	0314	1	1	2.4	48	IP23	Α	2.4	70(2/0)	
332	0368	1	1	2.4	64	IP23	Α	2.4	95(4/0)	
	0401	1	1	1.8	64	IP23	Α	1.8	120(250)	

6.4.7.5. Applications with DUTY CYCLE 20% - Class 6T

		Braking	Braking Resistor								
SIZE Mode	Model	Unit		Resistors	to be use	Type of	Value	Wire Cross- section			
		Q.ty	Q.ty	Recomm Power Degree of Connection	(Ω)	mm ² (AWG or kcmils)					
	0181	1	1	5	48	IP23	Α	4.2	50(1/0)		
S42	0201	1	1	3.6	64	IP23	Α	3.6	50(1/0)		
342	0218	1	1	3.6	64	IP23	Α	3.6	50(1/0)		
	0259	1	2	6.6	48	IP23	В	3.3	25(3)		
	0290	1	2	6	48	IP23	В	3.0	35(2)		
S52	0314	1	2	5	48	IP23	В	2.5	35(2)		
552	0368	1	2	5	64	IP23	В	2.5	50(1/0)		
	0401	1	2	3.6	64	IP23	В	1.8	70(2/0)		

6.4.7.6. Applications with DUTY CYCLE 50% - Class 6T

		Braking Unit	Braking Resistor								
SIZE	Model			Resistors	to be use	ed	Type of	Value	Wire Cross- section		
		Q.ty	Q.ty	Recomm ended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)		
	0181	1	4	5.0	32	IP23	D	5.0	25(3)		
S42	0201	1	4	3.6	48	IP23	D	3.6	70(2/0)		
342	0218	1	4	3.6	48	IP23	D	3.6	70(2/0)		
	0259	1	4	3.6	48	IP23	D	3.6	70(2/0)		
	0290	1	4	2.8	64	IP23	D	2.8	70(2/0)		
S52	0314	1	4	2.4	64	IP23	D	2.4	70(2/0)		
332	0368	1	4	2.4	64	IP23	D	2.4	120(250)		
	0401	1	4	1.8	64	IP23	D	1.8	120(250)		

Type of connection:

- A One resistor
- B Two or more parallel-connected resistors
- D Four resistors (parallel connection of two series of two resistors)

CAUTION

The cables of the braking resistors shall have insulation features and heat-resistance features suitable for the application. The minimum rated voltage of the cables must be 0.6/1kV.

6.5. Braking Unit BU1440 for Modular Inverters 4T and 5T-6T

A braking unit to be applied to modular inverters only is available. The inverter size must be equal to or larger than S65.

The BU1440 is an Open Type Equipment – degree of protection IP00 – that can be installed inside another enclosure featuring degree of protection IP3X as a minimum requirement.

6.5.1. Delivery Check

Make sure that the equipment is not damaged and that it complies with the equipment you ordered by referring to the nameplate located on the inverter front part (see figure below). If the equipment is damaged, contact the supplier or the insurance company concerned. If the equipment does not comply with the one you ordered, please contact the supplier as soon as possible.

If the equipment is stored before being started, make sure that temperatures range from –25°C to +70°C and that relative humidity is <95% (non-condensing).

The equipment guarantee covers any manufacturing defect. The manufacturer has no responsibility for possible damages occurred while shipping or unpacking the equipment. The manufacturer is not responsible for possible damages or faults caused by improper and irrational uses; wrong installation; improper conditions of temperature, humidity, or the use of corrosive substances. The manufacturer is not responsible for possible faults due to the equipment operation at values exceeding the equipment ratings. The manufacturer is not responsible for consequential and accidental damages.

The braking unit is covered by a 12-month guarantee starting from the date of delivery.

6.5.1.1. Nameplate for BU1440 4T

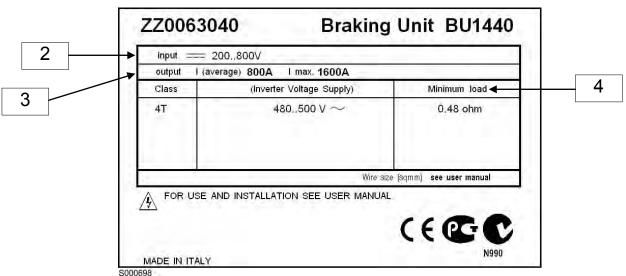


Figure 114: Nameplate for BU1440 4T

1. Model: BU1440 – Braking module 4T

2. Supply ratings: DC supply voltage deriving directly from the inverter terminals: 200 to 800

Vdc for BU1440 4T; 600÷1200 Vdc for BU1440 5T-6T

3. Output current: 800A (average) – continuous average current in output cables

1600A (max.) – max. current in output cables (may be held for all the time given in column "Max. Duration of Continuous Operation" in the resistors

tables below)

4. Min. load: Minimum value of the resistor to be connected to the output terminals (see

application tables below)

6.5.2. Operation

Each size of the braking unit can be used with a braking resistor avoiding exceeding the max. instant current stated in its specifications.

The braking unit is controlled directly by the control unit. Braking units cannot be parallel-connected when applied to modular inverters.

6.5.3. Ratings

SIZE	Max. braking current (A)	Average braking current (A)	Inverter supply voltage	Min. braking resistor (Ω)	Dissipated power (at average braking current) (W)
BU1440-4T	1600	800	380-500Vac	0.48	1800
BU1440-5T	1600	800	500-600Vac	0.58	2100
BU1440-6T	1600	800	600-690Vac	0.69	2200

6.5.4. Installing the BU1440

6.5.4.1. Environmental Requirements for the BU1440 Installation, Storage and Transport

Maximum surrounding air temperature	-10 to +40°C with no derating From +40°C to +55°C with a 2% derating of the rated current for each degree beyond +40°C.
Ambient temperatures for storage and transport	-25°C to +70°C
Installation environment	Pollution degree 2 or better (according to EN 61800-5-1). Do not install in direct sunlight and in places exposed to conductive dust, corrosive gases, vibrations, water sprinkling or dripping; do not install in salty environments.
Altitude	Max. altitude for installation 2000 m a.s.l. For installation above 2000 m and up to 4000 m, please contact Elettronica Santerno. Above 1000 m, derate the rated current by 1% every 100 m.
Operating ambient humidity	From 5% to 95%, from 1g/m ³ to 25g/m ³ , non-condensing and non-freezing (class 3k3 according to EN 50178)
Storage ambient humidity	From 5% to 95%, from 1g/m³ to 25g/m³, non-condensing and non-freezing (class 1k3 according to EN 50178).
Ambient humidity during transport	Max. 95%, up to 60g/m³; condensation may appear when the equipment is not running (class 2k3 according to EN 50178)
Storage and operating atmospheric pressure	From 86 to 106 kPa (classes 3k3 and 1k4 according to EN 50178)
Atmospheric pressure during transport	From 70 to 106 kPa (class 2k3 according to EN 50178)

CAUTION

Ambient conditions strongly affect the inverter life. Do not install the equipment in places that do not have the above-mentioned ambient conditions.

6.5.4.2. Mounting the Braking Unit

Install braking unit BU1440 for modular inverters in an upright position inside a cabinet, next to the other inverter modules. Its overall dimensions are the same as those of an inverter arm. For more details, please refer to the paragraph relating to the mechanical installation of the modular inverters.

Dime	ensions (n	nm)		Fixing	Screws	Weight (kg)		
W	Н	D	Χ	Υ	D1	D2	M10	110
230	1400	480	120	237	11	25	IVITO	110

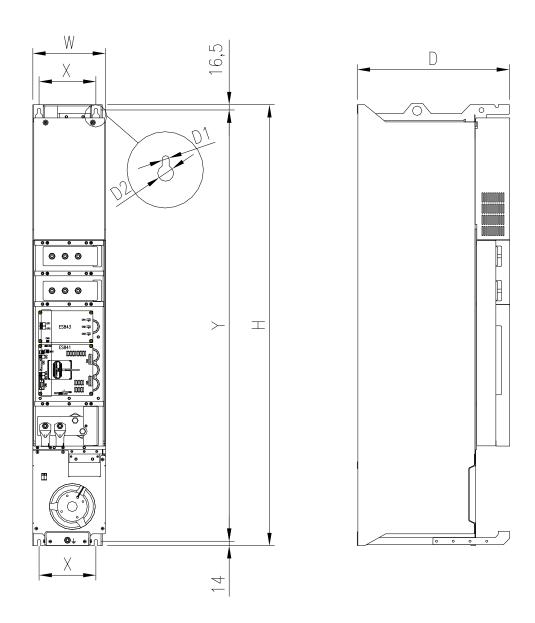


Figure 115: Dimensions and fixing points of BU1440

6.5.4.3. Wiring Diagram

Power connections

The braking unit must be connected to the inverter and the braking resistor.

The connection to the inverter is direct through 60*10mm copper plates connecting the different inverter modules. The braking resistor is connected to the + bar and to the braking unit.

Also connect the single-phase 230Vac supply of the cooling fan.

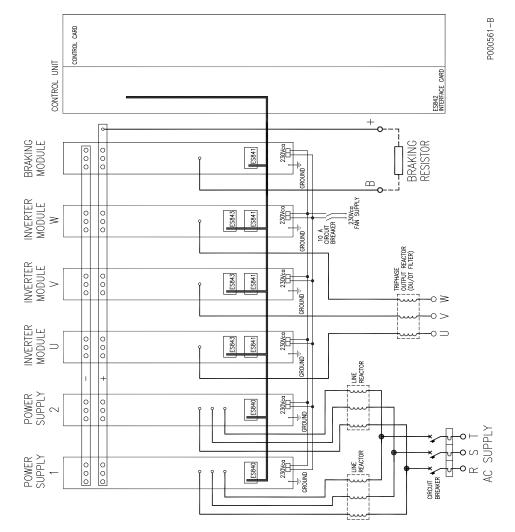


Figure 116: External power connections for modular inverters S65-S70 provided with BU1440

NOTE Power supply unit n.2 (power supply 2) is available for size S70.

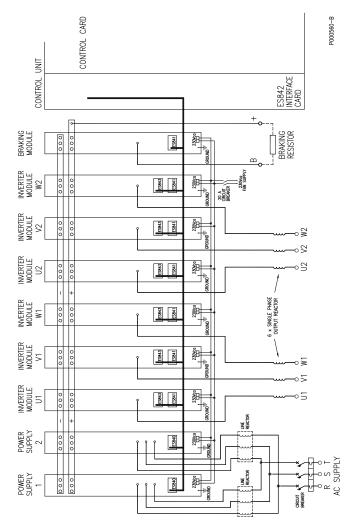


Figure 117: External power connections for modular inverters S75-S80 provided with BU1440

NOTE

Power supply unit n. 3 is available for size S80.

Signal connections

CAUTION

Make sure that the control device is properly set-up when using the braking arm. When ordering the inverter, always state the inverter configuration you want to obtain.

Because the braking arm is controlled directly by the control device, the following wiring is required:

- connect +24V supply of gate unit ES841 of the braking unit through a pair of unipolar wires (AWG17-18 - 1mm²)
- connect braking IGBT to the fault IGBT signal through 2 optical fibres (diameter: 1mm) made of plastic (typical attenuation coefficient: 0.22dB/m) provided with Agilent HFBR-4503/4513 connectors.

The wiring diagram is as follows:

Signal	Type of wiring	Wire marking	Component	Board	Connector	Component	Board	Connector
+24VD Driver board ES841 power supply	Unipolar wire 1mm²	24V-GB	Phase W	ES841	MR1-3	Braking unit	ES841	MR1-1
0VD Driver board ES841 power supply	Unipolar wire 1mm²	24V-GB	Phase W	ES841	MR1-4	Braking unit	ES841	MR1-2
Brake IGBT command	Single optical fibre	G-B	Control unit	ES842	OP-4	Braking unit	ES841	OP5
Brake IGBT fault	Single optical fibre	FA-B	Control unit	ES842	OP-3	Braking unit	ES841	OP3

CAUTION

Do not remove the cap of connector OP4 in ES841 control board of the the braking module.

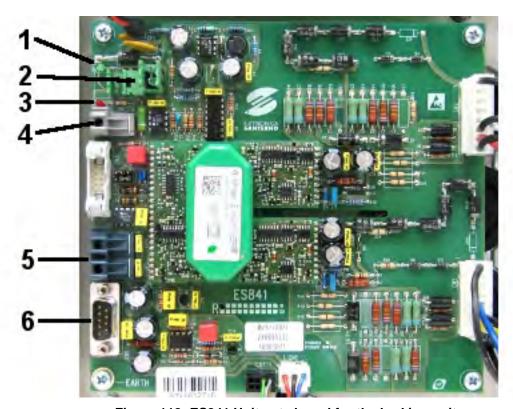


Figure 118: ES841 Unit gate board for the braking unit

SINUS PENTA

- 1. OP1: Green LED Board OK
- 2. MR1: 24V gate unit supply
- 3. OP2: Red LED Board faulty[*]
- 4. OP3: IGBT Fault [*]
- 5. OP4-OP5: IGBT gate commands. OP4 MUST BE SEALED DO NOT CONNECT
- 6. CN3: MUST NOT BE CONNECTED

NOTE [*]

The "IGBT Fault" signal, if the OP2 LED remains OFF, indicates that the thermoswitch has tripped.

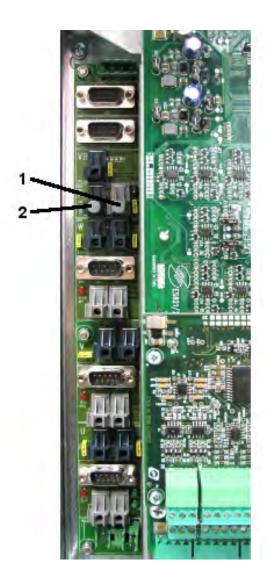


Figure 119: Connection points on ES842 for the braking unit optical fibres

- 7. OP4: Gate command for IGBT Brake
- 8. OP3: IGBT Fault Signal

The figure below shows the internal wiring of inverters S65-S70 provided with a braking unit.

SINGLE 1 mm PLASTIC FIBER OPTIC mm PLASTIC FIBER OPTIC 9 WRES SHIELDED CABLE P000538-B

Figure 120: Internal wiring of inverters S65-S70 provided with a braking unit

6.5.5. Earth Bonding of the BU1440

For the earth bonding of the BU1440, please refer to the general instructions given in section Inverter and Motor Ground Connection.

6.5.6. Scheduled Maintenance of the BU1440

For the BU1440 scheduled maintenance, please refer to the general instructions given in section Inverter Scheduled Maintenance.

SINUS PENTA INSTALLATION GUIDE

DANGER

Once power supply has been cut off from the drive connected to the BU1440, wait at least 20 minutes before operating on the DC circuits to give the capacitors time to discharge.

6.5.7. Braking Resistors for BU1440 4T

NOTE

The wire cross-sections given in the table relate to one wire per braking resistor.

HOT SURFACE Based on the functioning cycle, the surface of the braking resistor may reach 200°C.

CAUTION

The cables of the braking resistors shall have insulation features and heat-resistance features suitable for the application. The minimum rated voltage

of the cables must be 0.6/1kV.

CAUTION

The power dissipated by the braking resistors may be the same as the rated power of the connected motor multiplied by the braking duty-cycle; use a proper air-cooling system. Do not install braking resistors near heat-

sensitive equipment or objects.

CAUTION

Do not connect to the inverter any braking resistor with an Ohm value lower than the value given in the tables.

6.5.7.1. Applications with DUTY CYCLE 10% - Class 4T

	Sinus Penta Model	Braking Unit		Braking Resistor								
SIZE			Resistors to be used				Type of	Value	Wire Cross- section			
	Wodei	Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)			
	0598	1	1	1.2	64	IP23	Α	1.2	95(4/0)			
S65	0748	1	1	1.2	64	IP23	Α	1.2	95(4/0)			
	0831	1	2	1.6	48	IP23	В	0.8	120(250)			
	0964	1	2	1.2	48	IP23	В	0.6	120(250)			
S75	1130	1	2	1.2	64	IP23	В	0.6	120(250)			
	1296	2	4	1.8	32	IP23	V	0.45	95(4/0)			
S90	1800	2	4	1.6	48	IP23	V	0.4	120(250)			
390	2076	2	4	1.2	48	IP23	V	0.3	120(250)			

6.5.7.2. Applications with DUTY CYCLE 20% - Class 4T

		Braking Unit	Braking Resistor								
SIZE	Sinus Penta Model			Resistors to	be used	Type of	Value	Wire Cross- section			
	Model	Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)		
	0598	1	2	2.4	64	IP23	В	1.2	120(250)		
S65	0748	1	2	2.4	64	IP23	В	1.2	120(250)		
	0831	1	3	2.4	48	IP23	В	8.0	120(250)		
	0964	1	4	2.4	64	IP23	В	0.6	120(250)		
S75	1130	1	4	2.4	64	IP23	В	0.6	120(250)		
	1296	2	4	1.8	64	IP23	V	0.45	120(250)		
S90	1800	2	6	2.4	48	IP23	V	0.4	120(250)		
390	2076	2	8	2.4	64	IP23	V	0.3	120(250)		

6.5.7.3. Applications with DUTY CYCLE 50% - Class 4T

			Braking Resistor								
SIZE Penta	Sinus Penta			Resistors to be used				Value	Wire Cross- section		
	Model	Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)		
	0598	1	4	1.2	64	IP23	D	1.2	120(250)		
S65	0748	1	4	1.2	64	IP23	D	1.2	120(250)		
	0831	1	6	1.2	64	IP23	E	0.8	120(250)		
	0964	1	8	1.2	64	IP23	F	0.6	120(250)		
S75	1130	1	8	1.2	64	IP23	F	0.6	120(250)		
	1296	2	12	1.4	64	IP23	ME	0.47	120(250)		
S90	1800	2	12	1.2	64	IP23	ME	0.4	120(250)		
390	2076	2	16	1.2	64	IP23	MF	0.3	120(250)		

A - ONE RESISTOR

B-TWO OR MULTIPLE PARALLEL-CONNECTED RESISTORS

- C Two series-connected resistors
- D Four resistors (parallel-connection of two series of two resistors)
- E Six resistors (parallel-connection of three series of two resistors)
- F Eight resistors (parallel-connection of four series of two resistors)
- V Two units, each of them including a braking module connected to two or more parallel-connected braking resistors
- ME Two units, each of them including a braking module connected to six braking resistors (parallel-connection of three series of two resistors)
- MF Two units, each of them including a braking module connected to eight braking resistors (parallel-connection of four series of two resistors)

6.5.8. Braking Resistors for BU1440 5T-6T

NOTE

The wire cross-sections given in the table relate to one wire per braking resistor.

HOT SURFACE Based on the functioning cycle, the surface of the braking resistor may

reach 200°C.

CAUTION

The power dissipated by the braking resistors may be the same as the rated power of the connected motor multiplied by the braking duty-cycle; use a proper air-cooling system. Do not install braking resistors near heat-

sensitive equipment or objects.

CAUTION

Do not connect to the inverter any braking resistor with an Ohm value lower than the value given in the tables.

6.5.8.1. Applications with DUTY CYCLE 10% - Class 5T

	C iana	Braking Unit	Braking Resistor							
SIZE P	Sinus Penta Model			Resistors to	be used	Type of	Value	Wire Cross- section		
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)	
	0457	1	1	1.6	64	IP23	Α	1.6	95(1/0)	
S65	0524	1	2	2.8	48	IP23	В	1.4	50(1/0)	
303	0598	1	2	2.4	48	IP23	В	1.2	50(1/0)	
	0748	1	2	2.1	48	IP23	В	1.05	95(4/0)	
S70	0831	1	2	1.8	64	IP23	В	0.9	95(4/0)	
S75	0964	1	3	2.4	48	IP23	В	0.8	50(1/0)	
3/3	1130	1	3	1.8	64	IP23	В	0.6	95(4/0)	
S80		1	3	1.6	64	IP23	В	0.53	95(4/0)	
S90	1800	2	4	1.8	64	IP23	V	0.45	95(4/0)	
390	2076	2	6	2.4	48	IP23	V	0.4	50(1/0)	

6.5.8.2. Applications with DUTY CYCLE 20% - Class 5T

	Sinus	Braking Unit	Braking Resistor								
SIZE F	Sinus Penta Model			Resistors to	be used	Type of	Value	Wire Cross- section			
		Q.ty	Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)		
	0457	1	2	3.6	64	IP23	В	1.8	95(4/0)		
S65	0524	1	3	4.2	64	IP23	В	1.4	50(1/0)		
303	0598	1	3	3.6	64	IP23	В	1.2	50(1/0)		
	0748	1	3	2.8	64	IP23	В	0.93	70(2/0)		
S70	0831	1	3	2.4	64	IP23	В	8.0	95(4/0)		
S75	0964	1	4	2.8	64	IP23	В	0.7	70(2/0)		
3/3	1130	1	6	3.6	64	IP23	В	0.6	50(1/0)		
S80	1296	1	6	3	64	IP23	В	0.5	70(2/0)		
S90 -	1800	2	6	2.4	64	IP23	V	0.4	95(4/0)		
390	2076	2	8	2.8	64	IP23	V	0.35	70(2/0)		

6.5.8.3. Applications with DUTY CYCLE 50% - Class 5T

		Braking	Braking Resistor								
SIZE Sinus Penta Model	Unit		Resistors to	be used	Type of	Value	Wire Cross- section				
		Q.ty	Q.ty $egin{array}{ c c c c c c c c c c c c c c c c c c c$	(Ω)	mm² (AWG or kcmils)						
0457	0457	1	6	2.4	64	IP23	Е	1.6	70(4/0)		
S65	0524	1	6	2.1	64	IP23	E	1.4	95(4/0)		
303	0598	1	8	2.4	64	IP23	F	1.2	70(2/0)		
	0748	1	8	1.8	64	IP23	F	0.9	95(4/0)		
S70	0831	1	8	1.8	64	IP23	F	0.9	95(4/0)		
C7F	0964	1	10	1.8	64	IP23	G	0.7	95(4/0)		
S75	1130	1	12	1.8	64	IP23	Н	0.6	95(4/0)		
S80		1	14	1.8	64	IP23	[0.51	95(4/0)		
S90 —	1800	2	16	1.8	64	IP23	MF	0.45	95(4/0)		
	2076	2	20	1.8	64	IP23	MG	0.35	95(4/0)		

- A One resistor
- B Two or more parallel-connected resistors
- D Four resistors (parallel-connection of two series of two resistors)
- E Six resistors (parallel-connection of three series of two resistors)
- F Eight resistors (parallel-connection of four series of two resistors)
- G Ten resistors (parallel-connection of five series of two resistors)
- H Twelve resistors (parallel-connection of six series of two resistors)
- I Fourteen resistors (parallel-connection of seven series of two resistors)
- V Two units, each of them including a braking module connected to two or more parallel-connected braking resistors
- MF Two units, each of them including a braking module connected to eight braking resistors (parallel-connection of four series of two resistors)
- MG Two units, each of them including a braking module connected to ten braking resistors (parallel-connection of five series of two resistors)

HOT SURFACE

The cables of the braking resistors shall have insulation features and heat-resistance features suitable for the application. Based on the duty-cycle, the surface of the braking resistor may reach 200°C. The minimum rated voltage of the cables must be 0.6/1kV.

6.5.8.4. Applications with DUTY CYCLE 10% - Class 6T

SIZE	Sinus Penta Model	Braking Unit	Braking Resistor							
			Resistors to be used				Type of	Value	Wire Cross- section	
			Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)	
	0457	1	2	3.6	48	IP23	В	1.8	70(2/0)	
S65	0524	1	2	2.8	48	IP23	В	1.4	70(2/0)	
	0598	1	2	2.8	48	IP23	В	1.4	70(2/0)	
	0748	1	2	2.4	48	IP23	В	1.2	70(2/0)	
S70	0831	1	2	1.8	64	IP23	В	0.9	120(250)	
S75	0964	1	3	2.4	64	IP23	В	0.8	70(2/0)	
	1130	2	4	2.4	64	IP23	V	0.6	70(2/0)	
S80	1296	2	4	2.1	64	IP23	V	0.52	95(4/0)	
S90	1800	2	4	1.8	64	IP23	V	0.45	120(250)	
	2076	2	6	2.4	64	IP23	V	0.4	70(2/0)	

6.5.8.5. Applications with DUTY CYCLE 20% - Class 6T

SIZE	Sinus Penta Model	Braking Unit	Braking Resistor							
			Resistors to be used				Type of	Value	Wire Cross- section	
			Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)	
	0457	1	3	5	64	IP23	В	1.7	50(1/0)	
S65	0524	1	3	4.2	64	IP23	В	1.4	50(1/0)	
	0598	1	3	4.2	64	IP23	В	1.4	70(2/0)	
	0748	1	3	3.6	64	IP23	В	1.2	70(2/0)	
S70	0831	1	4	3.6	64	IP23	В	0.9	70(2/0)	
S75	0964	1	6	1.2	64	IP23	E	0.8	120(250)	
	1130	2	8	1.2	64	IP23	MD	0.6	120(250)	
S80	1296	2	8	1.2	64	IP23	MD	0.6	120(250)	
S90	1800	2	8	3.6	64	IP23	V	0.45	70(2/0)	
	2076	2	12	1.2	64	IP23	ME	0.4	120(250)	

6.5.8.6. Applications with DUTY CYCLE 50% - Class 6T

Size	Sinus Penta Model	Braking Unit	Braking Resistor							
			Resistors to be used				Type of	Value	Wire Cross- section	
			Q.ty	Recommended Value (Ω)	Power (kW)	Degree of Protection	Connection	(Ω)	mm² (AWG or kcmils)	
	0457	1	6	2.4	64	IP23	Е	1.6	95(4/0)	
CCE	0524	1	8	2.8	64	IP23	F	1.4	70(2/0)	
S65	0598	1	8	2.8	64	IP23	F	1.4	70(2/0)	
	0748	1	8	2.4	64	IP23	F	1.2	95(4/0)	
S70	0831	1	10	2.4	64	IP23	G	0.96	95(4/0)	
C7E	0964	1	12	2.4	64	IP23	Н	0.8	70(2/0)	
S75	1130	2	16	2.4	64	IP23	MF	0.6	95(4/0)	
S80	1296	2	16	2.1	64	IP23	MF	0.52	120(250)	
S90	1800	2	20	2.4	64	IP23	MG	0.48	95(4/0)	
390	2076	2	24	2.4	64	IP23	MH	0.4	70(2/0)	

- A One resistor
- B Two or more parallel-connected resistors
- D Four resistors (parallel-connection of two series of two resistors)
- E-Six resistors (parallel-connection of three series of two resistors)
- F Eight resistors (parallel-connection of four series of two resistors)
- G Ten resistors (parallel-connection of five series of two resistors)
- H Twelve resistors (parallel-connection of six series of two resistors)
- V Two units, each of them including a braking resistor connected to two or more parallel-connected braking resistors
- MD Two units, each of them including a braking module connected to four braking resistors (parallel-connection of two series of two resistors)
- MF Two units, each of them including a braking module connected to eight braking resistors (parallel-connection of four series of two resistors)
- MG Two units, each of them including a braking module connected to ten braking resistors (parallel-connection of five series of two resistors)
- MH Two units, each of them including a braking module connected to twelve braking resistors (parallel-connection of six series of two resistors)

HOT SURFACE The cables of the braking resistors shall have insulation features and heat-resistance features suitable for the application. Based on the duty-cycle, the surface of the braking resistor may reach 200°C. The min. rated voltage of the cables must be 0.6/1kV.

6.5.9. Available Braking Resistors

The specifications given for each resistor model also include the mean power to be dissipated and the max. operating time, depending on the inverter voltage class.

Based on these values, parameters **C211** and **C212** (concerning braking features) in the Resistor Braking menu can be set up. (See relevant section in the Sinus Penta's Programming Guide).

The max. operating time set in **C211** is factory-set in order not to exceed the allowable time for each resistor model (see section below).

Parameter **C212** represents the max. duty-cycle of the resistor and is to be set to a value lower than or equal to the value stated in the dimensioning table (see sections above).

HOT SURFACE

Braking resistors may reach temperatures higher than 200°C.

FIRE HAZARD For parameters **C211** and **C212**, do not set values exceeding the max. allowable values stated in the tables above. Failure to do so will cause irreparable damage to the braking resistors; also, fire hazard exists.

CAUTION

Braking resistors may dissipate up to 50% of the rated power of the connected motor; use a proper air-cooling system. Do not install braking resistors near heat-sensitive equipment or objects.

6.5.9.1. 350W Models (IP55)

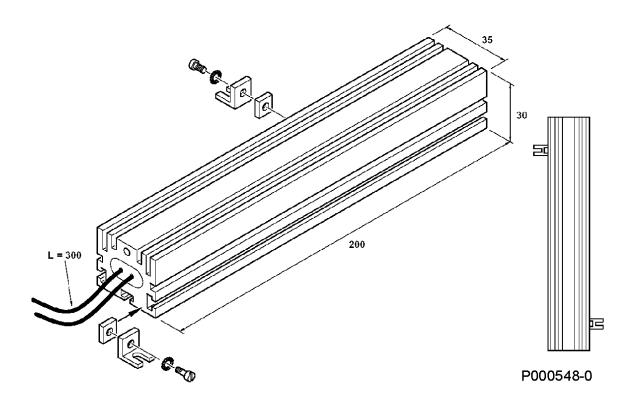


Figure 121: Overall dimensions, 350W resistor

Туре	Weight (g)	Average Power to be Dissipated (W)	Max. Duration of Continuous Operation for 200-240Vac (s)*
56Ω/350W RE2643560	400	350	3.5
100Ω/350W RE2644100	400	350	6

(*) Max. value to be set in parameter **C211** for single resistors or parallel-connected configurations. Duration is longer for different configurations (two or more series-connected resistors).

When setting the braking duty cycle in **C212**, make sure that the maximum power dissipated from the braking resistor being used is not exceeded.

6.5.9.2. 550W Models (IP33)

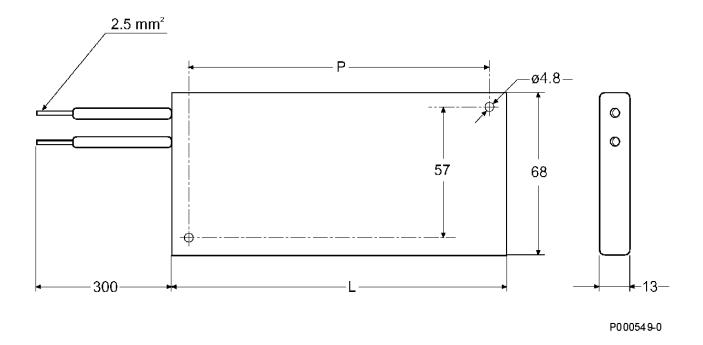


Figure 122: Overall dimensions for 550W braking resistor

Туре	L (mm)	D (mm)	Weight (g)	Mean power to be dissipated (W)	Max. duration of continuous operation for 380-500Vac (s)*
75Ω/550W RE3063750	195	174	500	550	4

^(*) Max. value to be set in parameter **C211** for single resistors or parallel-connected configurations. Duration is longer for different configurations (two or more series-connected resistors).

When setting the braking duty cycle in **C212**, make sure that the maximum power dissipated from the braking resistor being used is not exceeded.

6.5.9.3. IP54 Models from 1100W to 2200W

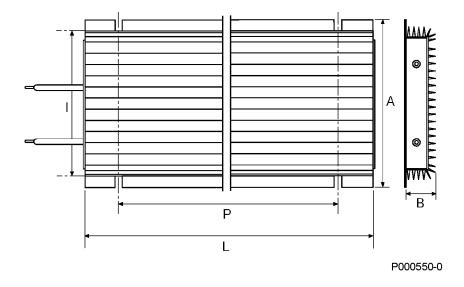


Figure 123: Overall dimensions for braking resistors from 1100W to 2200W

DESISTOR	A	В	L	ı	P	Weight	Average power that can be	Max. dur		ntinuous o (*)	peration
RESISTOR	(mm)	(mm)	(mm)	(mm)	(mm)	(g)	dissipated (W)	at 200- 240Vac	at 380- 500Vac	at 500- 575Vac	at 660- 690Vac
15Ω/1100W RE3083150								3	N	ot applicab	e
20Ω/1100W RE3083200								4	N	ot applicab	e
50Ω/1100W RE3083500	95	30	320	80-84	240	1250	950	11	3	Not app	olicable
180Ω/1100W RE3084180								Not	10	6	4
250Ω/1100W RE3084250								limited	14	9	6
10Ω/1500W RE3093100								3	N	ot applicab	le
39Ω/1500W RE3093390							1100	12	3	Not app	olicable
50Ω/1500W RE3093500	120	40	320	107- 112	240	2750		16	4	Not app	olicable
180Ω/1500W RE3094180								Not	14	8	6
250Ω/1500W RE3094250								limited	20	12	8
25Ω/1800W RE3103250			380		1 3(1(1)	3000	1300	9	3	Not app	olicable
120Ω/1800W RE3104120	120	40		107- 112				Not	11	7	4
250Ω/1800W RE3104250								limited	24	14	10
15Ω/2200W RE3113150								8	3	Not app	olicable
50Ω/2200W RE3113500								29	7	4	3
75Ω/2200W RE3113750	•								11	6	4
100Ω/2200W RE3114100	190	67	380	177- 182	300	7000	2000		14	9	6
150Ω/2200W RE3114150								Not limited	22	13	9
180Ω/2200W RE3114180									26	16	11
250Ω/2200W RE3114250									36	22	15

^(*) Max. value to be set in parameter **C211** for single resistors or parallel-connected configurations. Duration is longer for different configurations (two or more series-connected resistors).

When setting the braking duty cycle in **C212**, make sure that the maximum power dissipated from the braking resistor being used is not exceeded.

6.5.9.4. IP20 Models from 4kW-8kW-12kW

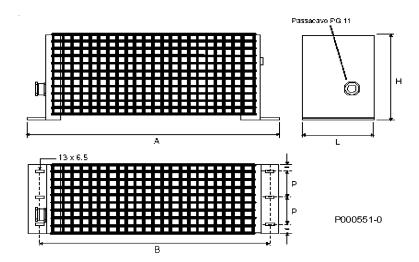


Figure 124: Overall dimensions for braking resistors 4kW, 8kW, 12kW

DEGISTOR	A	В	L	ı	Р	Weight	Average power that can be		ntion of co (s (*	ntinuous o	peration
RESISTOR	(mm)	(mm)	(mm)	(mm)	(mm)	(g)	dissipated (W)	at 200- 240Vac	at 380- 500Vac	at 500- 575Vac	at 660- 690Vac
5Ω/4kW RE3482500								7	Not applicable		
15Ω/4kW RE3483150								21	5	Not app	olicable
20Ω/4kW RE3483200								28	7	4	3
25Ω/4kW	620							35	8	5	3
RE3483250 39Ω/4kW									13	8	5
RE3483390 50Ω/4kW									17	11	7
RE3483500 60Ω/4kW		600	100	250	40	5.5	4000		21	13	9
RE3483600 82Ω/4kW			100	200	10	0.0	1000		29	18	12
RE3483820 100Ω/4kW								Not limited			15
RE3484100 120Ω/4kW									35	22	_
RE3484120 150Ω/4kW									42	26	18
RE3484150 180Ω/4kW	_								Not	33	22
RE3484180									limited	39 Not	27
250Ω/4kW RE3484250										Not limited	37
3.3Ω/8kW RE3762330								9	Not applicable		lo.
5Ω/8kW RE3762500								14	IN	ot applicab	ie
10Ω/8kW RE3763100								28	7	4	3
45Ω/8kW RE3763450	620	600	160	250	60	10.6	8000		32	19	13
82Ω/8kW								Not limited	.	36	24
RE3763820 120Ω/8kW	1								Not limited	Not	36
RE3764120 3.3Ω/12kW								4.		limited	
RE4022330 6.6Ω/12kW	-							14		ot applicab	
RE4022660	620	600	200	250	80	13.7	12000	28	7	4	3
10Ω/12kW RE4023100		600	200	200	00	13.7	500	42	10	6	4
45Ω/12kW RE4023450								Not limited	48	29	20

^(*) Max. value to be set in parameter **C211** for single resistors or parallel-connected configurations. Duration is longer for different configurations (two or more series-connected resistors).

When setting the braking duty cycle in **C212**, make sure that the maximum power dissipated from the braking resistor being used is not exceeded.

CAUTION

Because the metal frame of the braking resistor can reach high temperatures, appropriate cables capable of withstanding high temperatures must be used.

6.5.9.5. IP23 Boxes from 4kW to 64kW

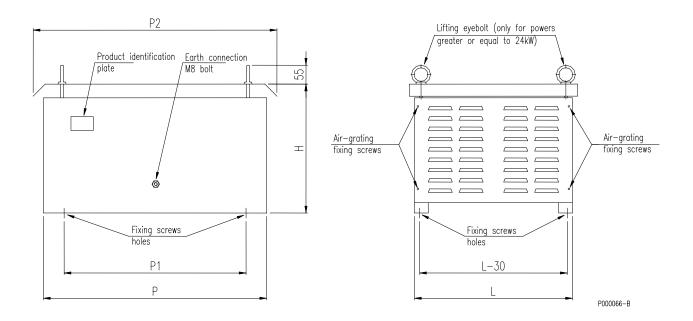


Figure 125: Overall dimensions of IP23 Box resistors

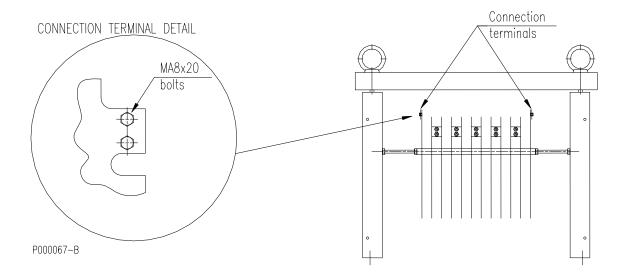


Figure 126: Position of electrical connections in box resistors

Remove the grids to gain access to wiring terminals (loosen fastening screws).

NOTE

The figure shows $20\Omega/12kW$ resistor. In certain models, remove both panels to gain access to the wiring terminals.

CAUTION

Because the metal frame of the braking resistor can reach high temperatures, appropriate cables capable of withstanding high temperatures must be used.

	Р	P1	P2	L	н	Weight	age · (W) an be	Max. du	ration of conti	nuous operatio	on (s) (*)	
RESISTOR	-		(mm)				Average power (W) that can be dissipated	at 200-240Vac	at 380-500Vac	at 500-575Vac	at 660-690Vac	
30Ω/4kW RE3503300								85	21	13	9	
45Ω/4kW RE3503450								128	32	19	13	
50Ω/4kW RE3503500									35	22	15	
60Ω/4kW RE3503600									42	26	18	
82Ω/4kW RE3503820	650	530	710	320	375	20	4000		58	36	24	
100Ω/4kW RE3504100								not limited	71	44	30	
120Ω/4kW RE3504120									85	53	36	
150Ω/4kW RE3504150									not	66	45	
180Ω/4kW RE3504180									limited	79	54	
15Ω/8kW RE3783150								85	21	13	not applicable	
18Ω/8kW RE3783180				380	375	23	8000		25	15	10	
22Ω/8kW RE3783220									31	19	13	
30Ω/8kW RE3783300	650	530	710						42	26	18	
45Ω/8kW RE3783450									not limited	64	39	27
50Ω/8kW RE3783500									71	44	30	
60Ω/8kW RE3783600									85	53	36	
82Ω/8kW RE3783820									not limited	72	49	
10Ω/12kW RE4053100								85	21	13	9	
12Ω/12kW RE4053120									25	15	10	
15Ω/12kW RE4053150									32	19	13	
18Ω/12kW RE4053180									38	23	16	
20Ω/12kW RE4053200	650	530	710	460	375	34	12000	not limited	42	26	18	
22Ω/12kW RE4053220								not inflited	46	29	19	
30Ω/12kW RE4053300									64	39	27	
45Ω/12kW RE4053450									96	59	40	
60Ω/12kW RE4053600									not limited	79	54	

	_			_			(W)	Max. dur	ation of conti	nuous opera	tion (s) (*)
RESISTOR	P (mm)	P1 (mm)	P2 (mm)	L (mm)		Weight (kg)	Average power (W) that can be dissipated	at 200-240Vac	at 380-500Vac	at 500-575Vac	at 660-690Vac
3.6Ω/16kW RE4162360								40	10	not	
5Ω/16kW RE4162500								57	14	applicable	not applicable
6.6Ω/16kW RE4162660								75	18	11	
8.2Ω/16kW RE4162820									23	14	9
10Ω/16kW RE4163100									28	18	12
12Ω/16kW RE4163120									34	21	14
15Ω/16kW RE4163150	650	530	710	550	375	40	16000		42	27	18
18Ω/16kW RE4163180								not limited	51	31	21
20Ω/16kW RE4163200									57	35	24
22Ω/16kW RE4163220									62	39	26
30Ω/16kW RE4163300									85	53	36
45Ω/16kW RE4163450									not limited	79	54
3Ω/24kW RE4292300								50	12	not applicable	not applicable
5Ω/24kW RE4292500								85	21	13	9
6.6Ω/24kW RE4292660									28	17	11
8.2Ω/24kW RE4292820									34	21	14
10Ω/24kW RE4293100	650	530	710	750	375	54	24000		42	27	18
15Ω/24kW RE4293150								not limited	64	40	27
18Ω/24kW RE4293180									76	47	32
22Ω/24kW RE4293220									93	58	39
30Ω/24kW RE4293300									not limited	79	54

	Р	P1	P2	L	н	Weight	(W) n be	Max. dur	ation of conti	nuous operat	ion (s) (*)
RESISTOR		(mm)		_		(kg)	Average power (W) that can be dissipated	at 200-240Vac	at 380-500Vac	at 500-575Vac	at 660-690Vac
1.8Ω/32kW RE4362180								60	16		
2.4Ω/32kW RE4362240								54	13	not applicable	
2.8Ω/32kW RE4362280								63	15		not applicable
3Ω/32kW RE4362300								68	17	10	
3.6Ω/32kW RE4362360								82	20	12	
4.2Ω/32kW RE4362420	050	530	710	990	275	60	32000	96	23	14	10
5Ω/32kW RE4362500	650	550	710	990	375	68	32000	114	28	17	12
6Ω/32kW RE4362600									34	21	14
6.6Ω/32kW RE4362660									37	23	15
10Ω/32kW RE4363100								not limited	56	35	24
15Ω/32kW RE4363150									85	53	36
18Ω/32kW RE4363180									102	63	43
0.45Ω/48W RE4461450								15		not applicable	not
0.6Ω/48kW RE4461600								20	not applicable		
0.8Ω/48kW RE4461800								27			
1.2Ω/48kW RE4462120								40	10		
1.4Ω/48kW RE4462140								47	11		applicable
1.6Ω/48kW RE4462160								54	13		
2.1Ω/48kW RE4462210	650	530	710	750	730	101	48000	71	17	11	
2.4Ω/48kW RE4462240								81	20	12	
2.8Ω/48kW RE4462280								95	23	14	10
3Ω/48kW RE4462300									25	16	10
3.6Ω/48kW RE4462360									30	19	13
4.2Ω/48kW RE4462420								not limited	35	22	15
5Ω/48kW RE4462500									42	26	18

	Р	P1	P2	L	Н	Weight	age r (W) an be ated	Max. dur	ation of conti	nuous operat	ion (s) (*)																														
RESISTOR					(mm)	(kg)	Average power (W) that can be dissipated	at 200-240Vac	at 380-500Vac	at 500-575Vac	at 660-690Vac																														
6Ω/48kW RE4462600									51	31	21																														
6.6Ω/48kW RE4462660							48000		56	35	23																														
10Ω/48kW RE4463100	650	530	710	750	730	101		not limited 85	53	36																															
12Ω/48kW RE4463120									not limited	63	43																														
15Ω/48kW RE4463150									not limited	79	54																														
0.3Ω/64kW RE4561300								13																																	
0.45Ω/64W RE4561450								20	not																																
0.6Ω/64kW RE4561600								27	applicable	not applicable																															
0.8Ω/64kW RE4561800									36			not applicable																													
1.2Ω/64kW RE4562120								54	13																																
1.4Ω/64kW RE4562140				990				63	15	10																															
1.6Ω/64kW RE4562160								72	18	11																															
1.8Ω/64kW RE4562180			530 710		730			81	20	12	10																														
2.1Ω/64kW RE4562210							64000	95	23	14	10																														
2.4Ω/64kW RE4562240	650	530				128		109	27	17	11																														
2.8Ω/64kW RE4562280									31	19	13																														
3Ω/64kW RE4562300									34	21	14																														
3.6Ω/64kW RE4562360									40	25	17																														
4.2Ω/64kW RE4562420									47	29	20																														
5Ω/64kW RE4552500								not limited	56	35	24																														
6Ω/64kW RE4562600									68	42	29																														
6.6Ω/64kW RE4562660																																							75	46	31
8.2Ω/64kW RE4562820																								93	58	39															
10Ω/64kW RE4563100									not limited	70	48																														

^(*) Max. value to be set in parameter **C211** for single resistors or parallel-connected configurations. Duration is longer for different configurations (two or more series-connected resistors).

When setting the braking duty cycle in **C212**, make sure that the maximum power dissipated from the braking resistor being used is not exceeded.

6.6. Keypad Remoting Kits

6.6.1. Remoting the Keypad on the Cabinet

The inverter keypad may be remoted. A special kit is supplied, which includes the following:

- plastic frame allowing installing the keypad on the front wall of the cabinet,
- keypad jig allowing installing the keypad on the front door of the cabinet,
- seal between keypad frame and cabinet,
- remoting cable (length: 5 m).

If the kit supplied is properly assembled, degree of protection IP54 is obtained for the front panel in the cabinet.

For any details on how to remote the keypad, please refer to Operating and Remoting the Keypad.

6.6.2. Remoting a Keypad Controlling Multiple Inverters

The keypad remoting kit is used to connect a standard Sinus Penta keypad to one or multiple inverters manufactured by Elettronica Santerno via an RS485 link using protocol MODBUS RTU. The keypad can then communicate with one device at a time and will become the network master, thus avoiding communicating with any other master devices (e.g. PLCs).

The keypad automatically detects which device it is connected to. If multiple devices are connected, you can select the device to be used from a selection list.

NOTE

The devices connected to the same network must have different addresses. Otherwise, no communication is possible.

NOTE

The sections below state the applicability of the keypad remoting kit to the products manufactured by Elettronica Santerno.

6.6.2.1. Kit Component Parts

The kit for the keypad used via serial link RS485 includes the following component parts:

- N.1 Interface converter provided with one RJ45 plug on one side, and with a 9-pole, female sub-D connector on the other side.
- N.1 ES914 board power supply unit, for separate supply from standard keypad (see ES914 Power Supply Unit Board).

DESCRIPTION	PART NUMBER
Adaptor kit for keypad connection via RS485	ZZ0101850

6.6.2.2. Operating Conditions

Operating temperature:	-10 to +55°C ambient temperature (contact Elettronica Santerno for
	higher ambient temperatures)
Relative humidity:	5 to 95% (non-condensing)
Max. operating altitude:	2000 m a.s.l. For installation above 2000 m and up to 4000 m, please
	contact Elettronica Santerno.
Max. consumption over 9 V power	300 mA
supply:	
Max. baud rate:	38.400 bps

6.6.2.3. Connecting the Keypad

Inverter-side connection: use a 9-pole, male D connector. To gain access to the D connector, just remove the cover on top of the inverter (size S05..S15), or remove the cover from the inverter bottom, located next to the control terminals (size \geq S20). If multiple inverters are connected to the same network, use a connector having the same features as the connector installed on the inverter.

The connector pins are detailed in the table below.

PIN	FUNCTION
1 – 3	(TX/RX A) Differential input/output A (bidirectional) according to standard RS485. Positive polarity in
	respect to pins 2 – 4 for one MARK.
2 – 4	(TX/RX B) Differential input/output B (bidirectional) according to standard RS485. Negative polarity
	in respect to pins 1 – 3 for one MARK.
5	(GND) control board zero volt
6	(VTEST) Test supply input – <u>do not connect</u>
7 – 8	Not connected
9	+ 5 V, max. 100 mA power supply

NOTE

The metal frame of the connector is connected to the inverter grounding. Connect the braiding of the twisted pair data cable to the metal frame of the female connector to be connected to the inverter.

Connector RJ 45 must be connected to the keypad.

This connector has the following connections:

PIN	FUNCTION
4	(TX/RX A) Differential input/output A (bidirectional) according to standard RS485. Positive polarity in
	respect to pin 6 for one MARK.
6	(TX/RX B) Differential input/output B (bidirectional) according to standard RS485. Negative polarity
	in respect to pin 4 for one MARK.
1-2-3	(GND) keypad zero volt.
5-7-8	+ 5 V, max. 100 mA power supply

The figure below shows the wiring diagram:

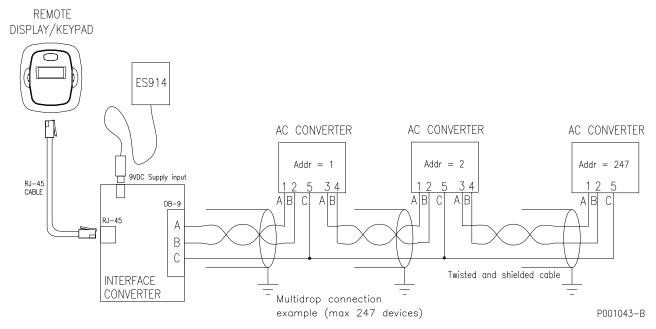


Figure 127: Wiring diagram of the keypad remoting kit controlling multiple inverters

6.6.2.4. The Communications Protocol

Standard MODBUS RTU protocol is used for communications.

Set the values below for the inverter/keypad; please refer to the Programming Manual of the inverter being used for the setup of the relevant parameters (see Sinus Penta's Programming Guide):

Setting values to the inverter

Baud rate:	38.400 bps
Data format:	8 bits
Start bit:	1
Parity:	NO
Stop bit:	2
Protocol:	MODBUS RTU
Device address:	configurable between 1 and 247 to avoid conflicts (default address is 1)
Electric standard:	RS485
Inverter response delay:	5 ms
End of message timeout:	2 ms

Setting values to the keypad

Device address:	configurable between 0 and 247 (default address is 1)

In order to scan the connected inverters, set the device address to 0 for the keypad. The keypad can communicate with one device at a time, based on the address that has been set up.

CAUTION

If different parameter values are set, communication errors between the inverter and the keypad may occur.

INSTALLATION GUIDE SINUS PENTA

6.6.2.5. Connection

Remove voltage from the inverter(s). Then proceed as follows:

Disconnect the keypad installed on the inverter (if any)

Please refer to the Installation Manual of the inverter being used.

Connect the cable to the interface converter and the keypad

Connect connector DB9 to the inverter or to network RS485. The converter side with telephone connector RJ45 must be already connected to the keypad.

Check that communication is correct

Turn on one of the inverters connected to the network. The keypad shows POWER ON. To scan the inverters connected to the network, set the device address on the keypad to 0. The list of the connected devices appears on the display/keypad. Select the device to be used to start communicating with the keypad, using all functionalities offered by the connected device. Please refer to the User Manual of the device being used for the operation of the keypad connected to the device.

Segregate the keypad power supply using the power supply unit

Connect the power supply unit supply output to the proper plug and set the toggle to ON.

6.7. Inductors

6.7.1. Input Inductors

We suggest that a three-phase inductor, or a DC-BUS DC inductor be installed on the supply line to obtain the following benefits:

- limit input current peaks on the input circuit of the inverter and value di/dt due to the input rectifier and to the capacitive load of the capacitors set;
- reducing supply harmonic current;
- increasing power factor, thus reducing line current;
- increasing the duration of line capacitors inside the inverter.

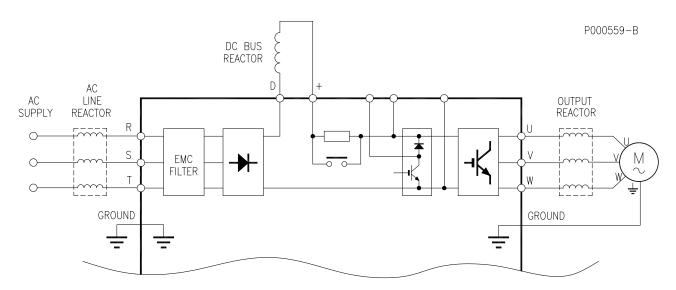


Figure 128: Wiring diagram for optional inductors

Harmonic currents

The shapes of the different waves (current or voltage) may be expressed as the sum of the basic frequency (50 or 60Hz) and its multiples. In balanced, three-phase systems, only odd harmonic current exists, as even current is neutralized by symmetrical considerations.

Harmonic current is generated by non-linear loads absorbing nonsinusoidal current. Typical sources of this type are bridge rectifiers (power electronics), switching power supply units and fluorescent lamps. Three-phase rectifiers absorb line current with a harmonic content

n=6K±1 with K=1,2,3,... (e.g. 5th,7th,11th,13th,17th,19th, etc.). Harmonic current amplitude decreases when frequency increases. Harmonic current carries no active power; it is additional current carried by electrical cables. Typical effects are: conductor overload, power factor decrease and measurement systems instability. Voltage generated by current flowing in the transformer inductor may also damage other appliances or interfere with mains-synchronized switching equipment.

Solving the problem

Harmonic current amplitude decreases when frequency increases; as a result, reducing high-amplitude components determines the filtering of low-frequency components. The better way is to increase low-frequency impedance by installing an inductor. Power drive systems with no mains-side inductor generate larger harmonic currents than power drives which do have an inductor.

The inductor may be installed both on AC-side, as a 3-phase inductor on the supply line, and on DC-side, as a single-phase inductor installed between the rectifier bridge and the capacitor bank inside the inverter. Even greater benefits are obtained if an inductor is installed both on AC-side and on DC-side.

Unlike DC inductors, AC inductors filter high-frequency components as well as low-frequency components with greater efficiency.

CAUTION

A DC inductor can be connected to inverters sizes S15, S20, S30. This must be specified when ordering the equipment (see Power Terminals Modified for a DC Inductor).

CAUTION

No DC inductor can be installed in S05(4T) inverters.

CAUTION

When a DC inductor is used, it can happen that no braking resistor can be connected when an external braking unit is connected, and vice versa (see Power Terminals Modified for a DC Inductor).

Harmonic currents in the inverter power supply

The amplitude of harmonic currents and their incidence on the mains voltage is strongly affected by the features of the mains where the equipment is installed. The ratings given in this manual fit most applications. For special requirements, please contact Elettronica Santerno's Customer service.

For more details and for analytical calculations based on the configuration of the grid connection you can use the Easy Harmonics application from Elettronica Santerno.

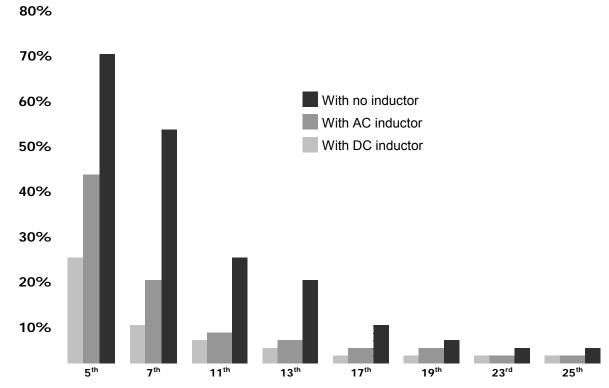


Figure 129: Amplitude of harmonic currents (approximate values)

<u>Use the input inductor</u> under the following circumstances:

CAUTION

converters installed for DC motors;

mains instability;

loads generating strong voltage variations at startup;

power factor correction systems.

Use the input inductor under the following circumstances:

when Penta drives up to size S12 included are connected to grids with a short-circuit power greater than 500kVA;

CAUTION

with Penta drives from size S15 to size S60P when the short-circuit power is 20 fold the inverter power;

when using parallel-connected inverters;

with Penta drives size S65 or greater, unless the inverter or the inverters are powered via a dedicated transformer;

with modular inverters provided with multiple power supply units (sizes S70, S75, S80 and S90).

The ratings of optional inductor recommended based on the inverter model are detailed in the section below.

6.7.2. Output Inductors (DU/DT Filters)

Installations requiring cable lengths over 100m between the inverter and the motor may cause overcurrent protections to frequently trip. This is due to the wire parasite capacity generating current pulses at the inverter output; those current pulses are generated from the high du/dt ratio of the inverter output voltage. The current pulses may be limited by an inductor installed on the inverter output. Shielded cables even have a higher capacity and may cause problems with shorter cable lengths.

The maximum distance between the motor and the inverter is given as an example, as parasite capacity is also affected by the type of wiring path and wiring system. For instance, when several inverters and their connected motors are networked, segregating the inverter wires from the motor wires will avoid capacitive couplings between the wiring of each motor.

An adverse effect can also be the stress produced on the motor insulation due to the high du/dt ratio at the inverter output.

CAUTION

Using du/dt filters is always recommended when the motor cable length is over 100m (50m with shielded cables).

It is recommended that Sine Filters be used (see Sine Filters) for lengths exceeding 300m (150m with shielded cables).

NOTE

When using parallel-connected motors, always consider the total length of the cables being used (sum of the cable length of each motor).

CAUTION

The output inductor is always required when using modular inverters and parallel-connected inverters.

CAUTION

The inductors stated in the tables below may be used when the inverter output frequency is not over 120Hz. For higher output frequency, a special inductor for the max. allowable operating frequency must be used. Please contact Elettronica Santerno.

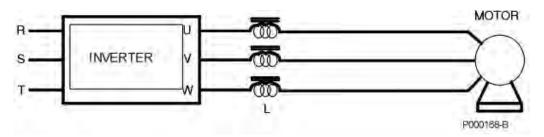


Figure 130: Output inductor wiring

6.7.3. Applying the Inductor to the Inverter

NOTE

IP54 rated 3-phase inductors are available for inverters up to S32 included.

6.7.3.1. Class 2T - AC and DC Inductors

SIZE	Sinus Penta MODEL	INPUT AC 3-PHASE INDUCTOR	DC INDUCTOR MODEL	THREE-PHASE OUTPUT AC INDUCTOR	MAX. OUTPUT FREQ. (Hz)
	0007	IN 40 4 0 0 0 4 4	10.40.40.40.4	1040400044	
	8000	IM0126044 1.27mH–17Arms	IM0140104	IM0126044 1.27mH–17Arms	60
005	0010	1.27IIIII—17AIIIIS	5.1mH-17A/21Apeak	1.27111 11111111111111111111111111111111	
S05	0015			IM0126084	
	0016	IM0126084	IM0140154	0.7mH-32Arms	60
	0020	0.7mH-32Arms	2.8mH-32.5A/40.5Apeak	(3-phase)	
S12	0023	IM0126124 0.51mH – 43Arms	IM0140204 2.0mH–47A/58.5Apeak	IM0126124 0.51mH–43Arms (3-phase)	60
312	0033	IM0126144	IM0140254	IM0126144	
	0037	0.3mH–68Arms	1.2mH–69A/87Apeak	0.32mH–68Arms (3-phase)	60
S15	0040	IM0126164	IM0140284 (*)	IM0126164	
0.0	0049	0.24mH-92Arms	0.96mH-100A/160Apeak	0.24mH-92Arms	60
	0060		Crocking real area (peak	(3-phase)	
S20	0067	IM0126204	IM0140304 (*)	IM0126204	00
	0074	0.16mH-142Arms	0.64mH-160A/195Apeak	0.16mH–142Arms	60
	0086 0113			(3-phase)	
	0113	IM0126244	IMO140404 (*)	IM0126244	
S30	0129	0.09mH–252Arms	IM0140404 (*) 0.36mH–275A/345Apeak	0.09mH-252Arms	60
	0162	0.0311111—232/411113	0.30mm=273A/343Apeak	(3-phase)	
	0180			IM0138200	
044	0202	IM0126282 (**) 0.063mH –360Arms	IM0140454 0.18mH–420A/520Apeak	0.070mH–360Arms (3-phase)	120
S41	0217	IM0126332 (**)	IM0140604	IM0138250	
	0260	0.05 mH–455Arms	0.14mH–520A/650Apeak	0.035mH –440Arms (3-phase)	120
	0313	IM0126372	IM0140664	IM0138300	
S51	0367	0.031mH–720Arms	0.09mH-830A/1040Apeak	0.025mH-700Arms	120
	0402	0.00 mm i=120Ami	·	(3-phase)	
	0457	IM0126404	IM0140754	IM0126404	
S60	0524	0.023mH-945Arms	0.092mH- 1040A/1300Apeak	0.023mH–945Arms (3-phase)	60

CAUTION (*)

For the inverter sizes S15, S20, S30, the DC inductors required are to be specified when ordering the equipment as they involve hardware modifications.

CAUTION (**)

Use the inductors described in section Inductors to be Applied to the Sinus Penta and the SU465 for 12-phase power supply.

6.7.3.2. Class 4T - AC and DC Inductors

SIZE	Sinus Penta MODEL	INPUT AC 3-PHASE INDUCTOR	DC INDUCTOR MODEL	OUTPUT 3-PHASE AC INDUCTOR	MAX. OUTPUT FREQ. (Hz)
	0005	IM0126004 2.0mH–11Arms		IM0126004 2.0mH-11Arms	60
S05	0007 0009 0011 0014	IM0126044 1.27mH–17Arms	Not applicable	IM0126044 1.27mH–17Arms	60
	0016 0017 0020	IM0126084 0.7mH–32Arms	IM0140154 2.8mH–32.5A	IM0126084 0.7mH–32Arms	60
S12	0025 0030	IM0126124 0.51mH–43Arms	IM0140204 2.0mH–47A	IM0126124 0.51mH–43Arms	60
	0034	IM0126144 0.3mH–68Arms	IM0140254 1.2mH–69A	IM0126144 0.32mH–68Arms	60
S15	0040 0049	IM0126164 0.24mH–92Arms	IM0140284 (*) 0.96mH–100A	IM0126164 0.24mH–92Arms	60
S20	0060 0067 0074 0086	IM0126204 0.16mH–142Arms	IM0140304 (*) 0.64mH–160A	IM0126204 0.16mH-142Arms	60
S30	0113 0129 0150 0162	IM0126244 0.09mH–252Arms	IM0140404 (*) 0.36mH-275A	IM0126244 0.09mH–252Arms	60
S41	0180 0202	IM0126282 (**) 0.063mH –360Arms	IM0140454 0.18mH–420A	IM0138200 0.070mH –360Arms	120
	0217 0260	IM0126332 (**) 0.05 mH–455Arms	IM0140604 0.14mH–520A	IM0138250 0.035mH –440Arms	120
S51	0313 0367 0402	IM0126372 (**) 0.031mH–720Arms	IM0140664 0.09mH-830A	IM0138300 0.025mH–700Arms	120
S60	0457 0524	IM0126404	IM0140754	IM0126404	60
S60P	0598P 0598	0.023mH–945Arms	0.092mH-1040A	0.023mH–945Arms	
S65	0748 0831	IM0126444 0.018mH–1260Arms	IM0140854 (*) 0.072mH–1470A	IM0126444 0.018mH-1260Arms	60
	0964	2 x IM0126404	2 x IM0140754 (*)	3.3 (3.11) 1200/Willia	
S75	1130	0.023mH-945A	0.092mH-1040A	6 x IM0141782 0.015mH–1250Arms	60
0,0	1296	2 x IM0126444 0.018mH-1260A	2 x IM0140854 (*) 0.072mH– 1470A	(single-phase)	00
S90	1800	3 x IM0126404 0.023mH–945Arms	3 x IM0140754 (*) 0.092mH-1040A	9 x IM0141782 0.015mH–1250Arms	60
	2076	3 x IM0126444 0.018mH–1260Arms	3 x IM0140854 (*) 0.072mH–1470A	(single-phase)	

CAUTION (*)

For the inverter sizes S15, S20, S30 and modular inverters from S65 to S90, the DC inductors required are to be specified when ordering the equipment as they involve hardware modifications.

CAUTION (**)

Use the inductors described in section Inductors to be Applied to the Sinus Penta and the SU465 for 12-phase power supply.

6.7.3.3. Class 5T-6T – AC and DC Inductors

SIZE	Sinus Penta MODEL	INPUT AC 3- PHASE INDUCTOR	DC INDUCTOR MODEL	THREE-PHASE OUTPUT AC INDUCTOR	MAX. OUTPUT FREQ. (Hz)
	0003	IM0127042 6.4mH–6.5Arms		IM0138000 1.5mH–9.5Arms (3-phase)	120
S12 5T S14 6T	0004 0006 0012	IM0127062 4.1mH–10.5Arms		IM0138010 1.0mH–14Arms (3-phase)	120
	0012	IM0127082 2.6mH–16Arms	Please contact	IM0138020 0.8mH–18.5Arms (3-phase)	120
	0019 0021	IM0127102 1.8mH–23Arms	Elettronica Santerno	IM0138030 0.60mH–27Arms (3-phase)	120
S14	0022 0024	IM0127122 1.1mH–40Arms		IM0138040 0.42mH–43Arms (3-phase)	120
	0032 0042	IM0127142 0.7mH–57Arms		IM0138045 0.28mH–65Arms (3-phase)	120
S22	0051 0062 0069	IM0127167 0.43mH–95Arms	IM0141404 1.2mH–110A	IM0138050 0.17mH–105Arms (3-phase)	120
	0076 0088	IM0127202 0.29mH–140Arms	IM0141414 0.80mH–160A	IM0138100 0.11mH–165Arms (3-phase)	120
S32	0131 0164	IM0127227 0.19mH–210Arms	IM0141424 0.66mH–240A	IM0138150 0.075mH–240Arms (3-phase)	120
	0181 0201	IM0127274 (**) 0.12mH–325A	IM0141434 0.32mH–375A	IM0138200 0.070mH –360Arms (3-phase)	120
S42	0218 0259	IM0127330 (**) 0.096mH–415Arms	IM0141554 0.27mH–475A	IM0138250 0.035mH –440Arms (3-phase)	120
S 52	0290 0314 0368 0401	IM0127350 (**) 0.061mH–650Arms	IM0141664 0.17mH–750A	IM0138300 0.025mH–700Arms (3-phase)	120
S65	0457 0524 0598	IM0127404 0.040mH–945Arms	IM0141804 (*) 0.160mH–1170A	IM0127404 0.040mH-945Arms (3-phase)	60
		IM0127444 0.030mH-1260Arms 2 x IM0127364	IM0141904 (*) 0.120mH-1290A 2 x IM0141704 (*)	IM0127444 0.030mH–1260Arms	60
S70	0831	0.058mH-662Arms	0.232mH–830A	(3-phase)	
S75	0964 1130	2 x IM0127404 0.040mH-945Arms 2 x IM0127444 0.030mH-1260Arms	2 x IM0141804 (*) 0.160mH–1170A	6 x IM0141782 0.015mH–1250Arms (single-phase)	60
S80	1296	3 x IM0127404	3 x IM0141804 (*)		
S90	1800 2076	0.040mH–945Arms 3 x IM0127444 0.030mH–1260Arms	0.160mH–1170A 3 x IM0141904 (*) 0.120mH–1290A	9 x IM0141782 0.015mH–1250Arms (single-phase)	60

CAUTION (*)

For the modular inverters from S65 to S90, the DC inductors required are to be specified when ordering the equipment as they involve hardware modifications.

CAUTION (**)

Use the inductors described in section Inductors to be Applied to the Sinus Penta and the SU465 for 12-phase power supply.

6.7.4. Inductance Ratings

6.7.4.1. Class 2T-4T - AC 3-Phase Inductors

INDUCTOR MODEL	TYPE		TANCE INGS	DIMENSIONS							FIXING HOLES	WGT	LOSSES
WIODEL		mΗ	Α	TYPE	L	Н	Р	М	Е	G	mm	kg	W
IM0126004	Input-output	2.00	11	Α	120	125	75	25	67	55	5	2.9	29
IM0126044	Input-output	1.27	17	Α	120	125	75	25	67	55	5	3	48
IM0126084	Input-output	0.70	32	В	150	130	115	50	125	75	7x14	5.5	70
IM0126124	Input-output	0.51	43	В	150	130	115	50	125	75	7x14	6	96
IM0126144	Input-output	0.30	68	В	180	160	150	60	150	82	7x14	9	150
IM0126164	Input-output	0.24	92	В	180	160	150	60	150	82	7x14	9.5	183
IM0126204	Input-output	0.16	142	В	240	210	175	80	200	107	7x14	17	272
IM0126244	Input-output	0.090	252	В	240	210	220	80	200	122	7x14	25	342
IM0126282	Input only	0.063	360	С	300	286	205	100	250	116	9x24	44	350
IM0126332	Input only	0.050	455	С	300	317	217	100	250	128	9x24	54	410
IM0126372	Input only	0.031	720	С	360	342	268	120	325	176	9x24	84	700
IM0126404	Input-output	0.023	945	С	300	320	240	100	250	143	9x24	67	752
IM0126444	Input-output	0.018	1260	С	360	375	280	120	250	200	12	82	1070

6.7.4.2. Class 5T-6T – AC 3-Phase Inductors

INDUCTOR	INPUT/OUTPUT	INDUC' RATI	TANCE INGS			DIME	ENSIG		FIXING HOLES	WGT	LOSSES		
MODEL		mΗ	Α	TYPE	L	Η	Р	M	Е	G	mm	kg	W
IM0127042	Input only	6.4	6.5	Α	150	170	101	-	90	70	7x10	3	22
IM0127062	Input only	4.1	10.5	Α	180	173	110	-	150	73	8.5x15	4.5	28
IM0127082	Input only	2.6	16	Α	180	173	120	-	150	83	8.5x15	6.5	45
IM0127102	Input only	1.8	23	Α	180	173	130	ı	150	93	8.5x15	9	52
IM0127122	Input only	1.1	40	Α	240	228	140	ı	200	80	8x15	14	96
IM0127142	Input only	0.70	57	Α	240	228	175	-	200	115	8x15	19	122
IM0127167	Input only	0.43	95	В	240	224	187	80	200	122	7x18	27	160
IM0127202	Input only	0.29	140	В	300	254	190	100	250	113	9x24	35	240
IM0127227	Input only	0.19	210	В	300	285	218	100	250	128	9x24	48	260
IM0127274	Input only	0.12	325	С	300	286	234	100	250	143	9x24	60	490
IM0127330	Input only	0.096	415	С	360	340	250	120	325	166	9x24	80	610
IM0127364	Input-output	0.058	662	С	360	310	275	120	325	166	9x24	79	746
IM0127350	Input only	0.061	650	С	360	411	298	120	240	220	9x24	113	920
IM0127404	Input-output	0.040	945	С	360	385	260	120	250	200	12	88	1193
IM0127444	Input-output	0.030	1260	С	420	440	290	140	300	200	12	110	1438

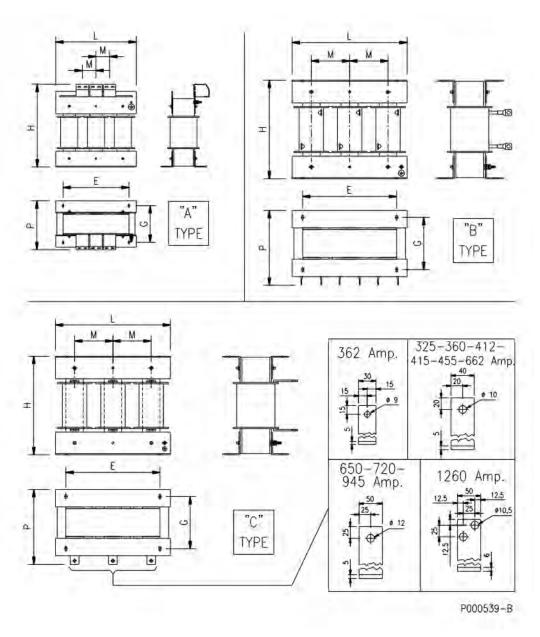


Figure 131: Mechanical features of a 3-phase inductor

6.7.4.3. Class 2T-4T - DC Inductors

INDUCTOR	MODEL USE RATINGS						ENSIG	ONS			FIXING HOLE	WEIGHT	LOSSES
WODEL		mΗ	Α	TYPE	L	Н	Р	М	Е	G	mm	kg	W
IM0140054	DC BUS	8.0	10.5	Α	110	125	100	60	90	65	7x10	4.5	20
IM0140104	DC BUS	5.1	17	Α	110	125	100	60	90	65	7x10	5	30
IM0140154	DC BUS	2.8	32.5	Α	120	140	160	60	100	100	7x10	8	50
IM0140204	DC BUS	2.0	47	Α	160	240	160	80	120	97	7x14	12	80
IM0140254	DC BUS	1.2	69	Α	160	240	160	80	120	97	7x14	13	90
IM0140284	DC BUS	0.96	100	Α	170	240	205	80	155	122	7x18	21	140
IM0140304	DC BUS	0.64	160	Α	240	260	200	120	150	121	9x24	27	180
IM0140404	DC BUS	0.36	275	Α	260	290	200	130	150	138	9x24	35	320
IM0140454	DC BUS	0.18	420	В	240	380	220	120	205	156	9x24	49	290
IM0140604	DC BUS	0.14	520	В	240	380	235	120	205	159	9x24	57	305
IM0140664	DC BUS	0.090	830	В	260	395	270	130	225	172	9x24	75	450
IM0140754	DC BUS	0.092	1040	C	310	470	320	155	200	200	12	114	780
IM0140854	DC BUS	0.072	1470	С	330	540	320	165	250	200	12	152	950

6.7.4.4. Class 5T-6T - DC Inductors

INDUCTOR MODEL	USE	INDUC' RATI	TANCE INGS			DIME	ENSIG	ONS		FIXING HOLE	WEIGHT	LOSSES	
MODEL		mΗ	Α	TYPE	L	Н	Р	М	Ε	G	mm	kg	W
IM0141404	DC BUS	1.2	110	Α	170	205	205	80	155	122	7x18	21	165
IM0141414	DC BUS	0.80	160	Α	200	260	215	100	150	111	9x24	27	240
IM0141424	DC BUS	0.66	240	Α	240	340	260	120	205	166	9x24	53	370
IM0141434	DC BUS	0.32	375	В	240	380	235	120	205	159	9x24	56	350
IM0141554	DC BUS	0.27	475	В	240	380	265	120	205	179	9x24	66	550
IM0141664	DC BUS	0.17	750	В	260	395	295	130	225	197	9x24	90	580
IM0141704	DC BUS	0.232	830	С	330	550	340	165	250	200	12	163	800
IM0141804	DC BUS	0.16	1170	С	350	630	360	175	250	200	12	230	1200
IM0141904	DC BUS	0.12	1290	С	350	630	360	175	250	200	12	230	1300

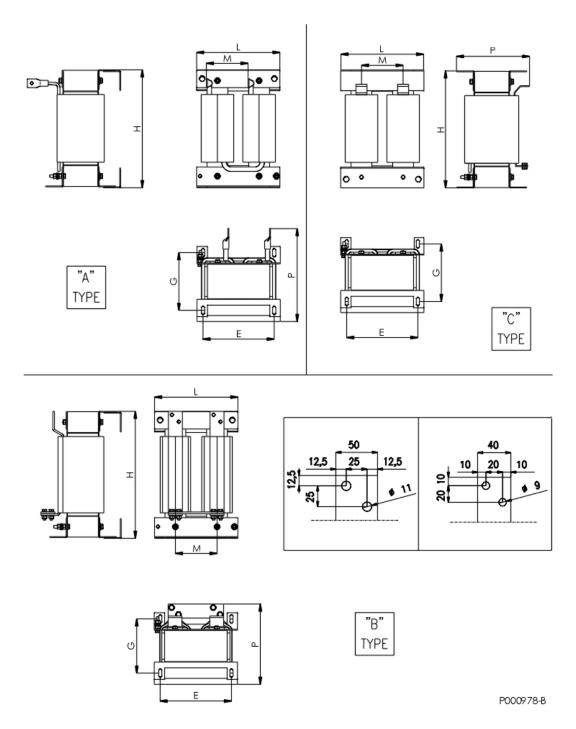


Figure 132: Mechanical features of a DC inductor

6.7.4.5. Class 2T, 4T, 5T, 6T – 3-Phase DU/DT Inductors

INDUCTOR MODEL	USE		TANCE INGS	HOLE WGT LOSS								DIMENSIONS				LOSSES
MODEL		mΗ	Α	TYPE	L	Η	Р	М	Е	G	mm	kg	W			
IM0138000	Output only	1.5	9.5													
IM0138010	Output only	1.0	14													
IM0138020	Output only	0.80	18.5			DIA	000.0	onto	st Elo	ttroni	ca Sante	orno				
IM0138030	Output only	0.60	27			FIE	ase c	Unital	JI LIE	tti Oi ii	ca Sant	51110				
IM0138040	Output only	0.42	43													
IM0138045	Output only	0.28	65													
IM0138050	Output only	0.17	105	Α	300	259	192	100	250	123	9x24	39	270			
IM0138100	Output only	0.11	165	Α	300	258	198	100	250	123	9x24	42	305			
IM0138150	Output only	0.075	240	Α	300	321	208	100	250	123	9x24	52	410			
IM0138200	Output only	0.070	360	В	360	401	269	120	250	200	12x25	77	650			
IM0138250	Output only	0.035	440	В	360	401	268	120	250	200	12x25	75	710			
IM0138300	Output only	0.025	700	В	360	411	279	120	250	200	12x25	93	875			

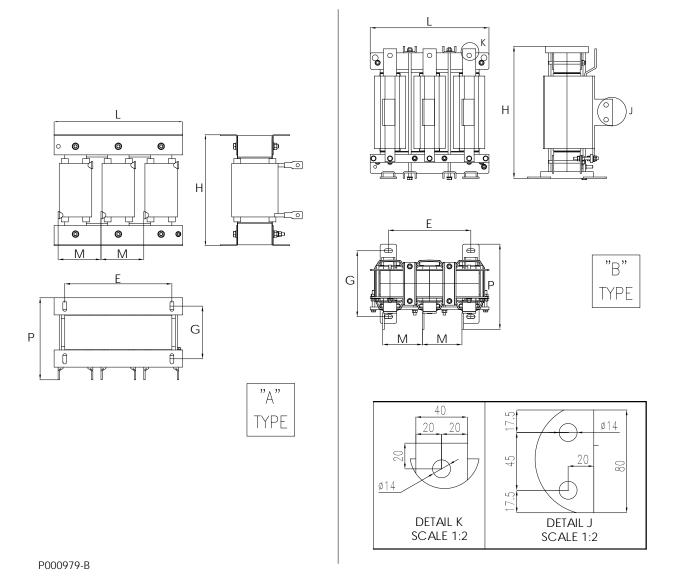


Figure 133: Mechanical features of the 3-phase du/dt inductors

6.7.5. Class 2T – 3-Phase AC Inductors in IP54 Cabinet

SIZE	Sinus Penta MODEL	INDUCTOR MODEL	USE	MECHANICAL DIMENSIONS (see Figure 134) TYPE	WEIGHT kg	LOSSES
S05	0007 0008 0010	ZZ0112020	Input-output	А	7	48
303	0015 0016 0020	ZZ0112030	Input-output	А	9.5	70
	0023	ZZ0112040	Input-output	Α	10	96
S12	0033 0037	ZZ0112045	Input-output	В	14	150
S15	0040 0049	ZZ0112050	Input-output	В	14.5	183
	0060					
S20	0067					
320	0074	ZZ0112060	Input-output	С	26	272
	0086					
	0113					
S30	0129	ZZ0112070	Input-output	С	32.5	342
	0150	220112070	input-output	J	32.5	J-2
	0162					

6.7.6. Class 4T – 3-Phase AC Inductors in IP54 Cabinet

SIZE	Sinus Penta MODEL	INDUCTOR MODEL	USE	MECHANICAL DIMENSIONS (see Figure 134) TYPE	WEIGHT	LOSSES	
	0005	ZZ0112010	Input-output	A	6.5	29	
	0007		1 1 1 1 1 1 1 1				
S05	0009	770440000	land the state of	۸	_	40	
	0011	ZZ0112020	Input-output	Α	7	48	
	0014						
	0016						
S 12	0017	ZZ0112030	Input-output	Α	9.5	70	
	0020						
	0025	ZZ0112040	Input-output	Α	10	96	
	0030						
	0034	ZZ0112045	Input-output	В	14	150	
	0036 0040						
S15	0040	ZZ0112050	Input-output	В	14.5	183	
	0060	220112030	input-output	Ь	14.5	103	
	0067						
S20	0074	ZZ0112060	Input-output	С	26	272	
	0086		par. carpar				
	0113						
620	0129	770440070	Innest actions	0	22.5	240	
S30	0150	ZZ0112070	Input-output	t C	32.5	342	
	0162					r	

6.7.7. Class 5T-6T - 3-Phase AC Inductors In IP54 Cabinet

SIZE	Sinus Penta MODEL	INDUCTOR MODEL	USE	MECHANICAL DIMENSIONS	WEIGHT	LOSSES			
	WODEL	WODEL		TYPE	kg	W			
	0003	ZZ0112110	Input only						
S12 5T	0004	ZZ0112120	Input only						
S12 51	0006	220112120	input only						
01401	0012	ZZ0112130	Input only						
	0018	220112130	input only						
	0019	ZZ0112140	Input only						
	0021	220112140	Input only						
S14	0022	ZZ0112150	Input only						
	0024	220112100	input only	Please contact Elettronica Santerno					
	0032	ZZ0112160	Input only	ricase contact Elettromoa Gamerro					
	0042	220112100	input only						
S22	0051								
022	0062	ZZ0112170	Input only						
	0069								
S 32	0076	ZZ0112180	Input only						
	8800	220112100	input only						
	0131	ZZ0112190	Input only						
	0164	220112190	input only						

SIZE	Sinus Penta INDUCTOR USE		USE	MECHANICAL DIMENSIONS	WEIGHT	LOSSES			
	WIODEL	WIODEL		TYPE	kg	W			
	0003	ZZ0112115	Output only						
S12 5T	0004	220112110	Output only						
S14 6T	0006	ZZ0112125	Output only						
	0012	220112120	Output only						
	0018	ZZ0112135	Output only						
	0019	ZZ0112145	Output only						
	0021	220112140	Output only						
S14	0022	ZZ0112155	Output only						
	0024	220112100	Output only	Please contact Elettronica Santerno					
	0032	ZZ0112165	Output only						
	0042	220112100	Output only						
S22	0051								
322	0062	ZZ0112175	Output only						
	0069								
S32	0076	ZZ0112185	Output only						
	8800	220112100	Output offig						
	0131	ZZ0112195	Output only						
	0164	220112190	Sutput Only						

INSTALLATION GUIDE SINUS PENTA

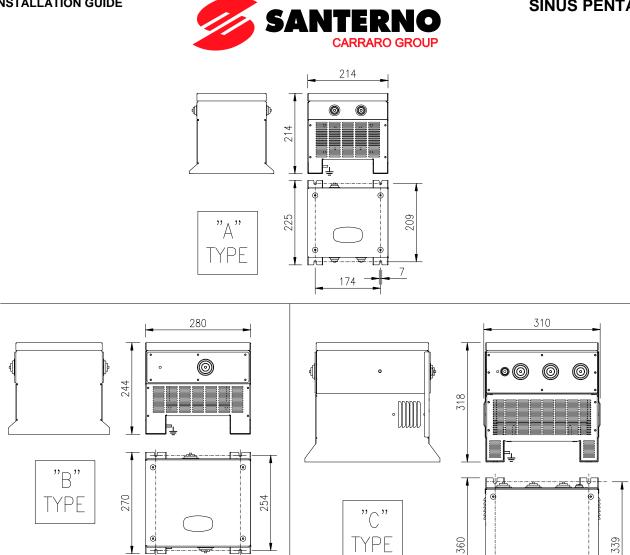


Figure 134: Mechanical features of a 3-phase inductor for Class 2T-4T in IP54 cabinet

225

P000540-B

10

6.7.8. Output Single-Phase Inductors for Modular Inverters S75, S80, S90

6.7.8.1. AC single-phase Inductors – Class 4T-5T-6T

INDUCTOR	USE	INDUCTOR RATINGS			DIMENSIONS					FIXING HOLE	WEIGHT	LOSSES	
MODEL		mΗ	Α	L	Н	Р	P1	М	Е	G	mm	kg	W
IM0141782	Output S75, S80, S90	0.015	1250	260	430	385	310	136	200	270	9x24	100	940

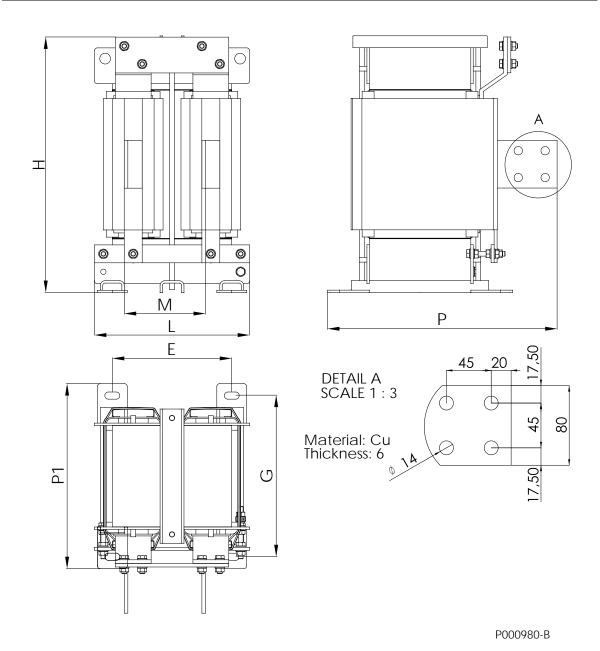


Figure 135: Mechanical features of a single-phase output inductor

6.7.9. Sine Filters

The sine filter is a system component to be installed between the inverter and the motor to enhance the equipment performance:

- a) The sine filter reduces the voltage peak in the motor terminals: The overvoltage in the motor terminals may reach 100% under certain load conditions.
- b) The sine filter reduces the motor losses.
- c) The sine filter reduces the motor noise: The motor noise can be reduced of approx. 8 dBA because the high-frequency component of the current flowing in the motor and the cables is reduced. A noiseless motor is particularly suitable for residential environments.
- d) The sine filter reduces the probability of EMC disturbance: When the cables between the inverter and the motor are too long, the square-wave voltage produced by the inverter is a source of electromagnetic disturbance.
- **e)** The sine filter allows controlling transformers: "Normal" transformers can be powered directly from the inverter that do not need to be properly dimensioned to withstand the carrier frequency voltage.
- f) The inverter can be used as a voltage generator at constant voltage and constant frequency.

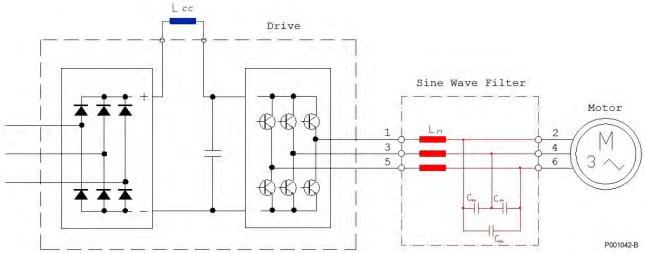


Figure 136: Sine filter

It is recommended that sine filters manufactured by Elettronica Santerno be used.

CAUTION

See Sine Filters - User Manual

Please contact Elettronica Santerno if sine filters from other manufacturers are used, as it may be necessary to change Sinus Penta's parameterization.

The sine filters may be damaged if the drive parameters are not set accordingly.

6.8. ES836/2 Encoder Board (Slot A)

Board for incremental, bidirectional encoder to be used as a speed feedback for inverters of the SINUS series. It allows the acquisition of encoders with power supply ranging from 5 to 15VDC (adjustable output voltage) with complementary outputs (line driver, push-pull, TTL outputs). It can also be connected to 24DC encoders with both complementary and single-ended push-pull or PNP/NPN outputs.

The encoder board is to be installed into SLOT A. See section Installing ES836/2 Encoder Board on the Inverter.

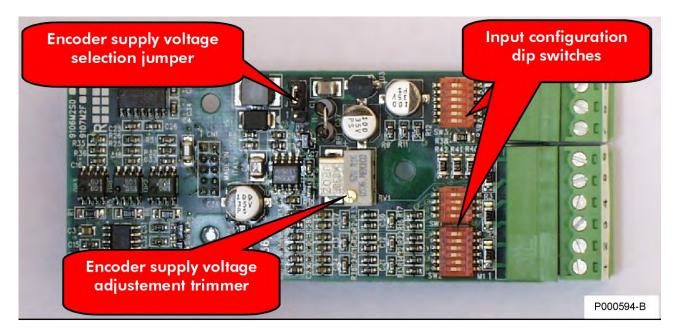


Figure 137: Encoder board (ES836/2)

6.8.1. Identification Data

Description	Part	COMPATIBLE ENCODERS				
Description	Number	POWER SUPPLY	OUTPUT			
ES836/2 Encoder board	ZZ0095834	5Vdc÷15Vdc, 24Vdc	LINE DRIVER, NPN, PNP, complementary PUSH- PULL, NPN, PNP, single- ended PUSH-PULL			

6.8.2. Environmental Requirements

Operating temperature	-10 to +55°C ambient temperature (contact Elettronica Santerno for
	higher ambient temperatures)
Relative humidity	5 to 95% (non-condensing)
Max. operating altitude	2000 m a.s.l. For installation above 2000 m and up to 4000 m,
	please contact Elettronica Santerno.

6.8.3. Electrical Specifications

Decisive voltage class A according to EN 61800-5-1.

Electrical Specifications		Ratings				
Electrical Specifications	Min.	Туре	Мах.	Unit		
Encoder supply current, + 24 V, protected with resettable fuse			200	mA		
Electronically protected encoder supply current, +12V			350	mA		
Electronically protected encoder supply current, +5V			900	mA		
Adjustment range for encoder supply voltage (5V mode)	4.4	5.0	7.3	V		
Adjustment range for encoder supply voltage (12V mode)	10.3	12.0	17.3	V		
Input channels	Three channels: A, B, and zero					
	notch Z					
Type of input signals	Complementary or single-					
	ended					
Voltage range for encoder input signals	4		24	V		
Pulse max. frequency with noise filter "on"	77kHz (1024pls @ 4500rpm)					
Pulse max. frequency with noise filter "off"	155kHz (1024pls @ 9000rpm)					
Input impedance in NPN or PNP mode (external pull-up or pull-down resistors required)		15k		Ω		
Input impedance in push-pull or PNP and NPN mode when internal load resistors (at max. frequency) are connected		3600		Ω		
Input impedance in line-driver mode or complementary push-pull signals with internal load resistors activated via SW3 (at max. frequency) (see Configuration DIP-switches)		780		Ω		

ISOLATION:

The encoder supply line and inputs are galvanically isolated from the inverter control board grounding for a 500 VAC/1 minute test. The encoder supply grounding is in common with control board digital inputs available in the terminal board.

6.8.4. Installing ES836/2 Encoder Board on the Inverter (Slot A)

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal capacitors to avoid any electric shock hazard.

CAUTION

Electric shock hazard: do not connect/disconnect the signal terminals or the power terminals when the inverter is on. This also prevents the inverter from being damaged.

NOTE

All the screws used to fasten removable parts (terminals cover, serial interface connector, cable plates, etc.) are black, round-head, cross-head screws.

When wiring the inverter remove only this type of screws. If different screws or

When wiring the inverter, remove only this type of screws. If different screws or bolts are removed, the inverter warranty will be no longer valid.

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- 2. Remove the cover to gain access to the inverter control terminals. The fixing spacers and the signal connector are located on the left.

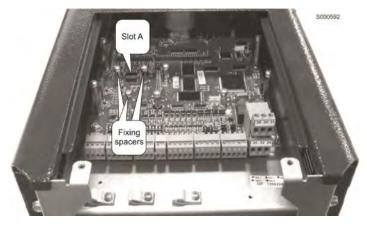


Figure 138: Position of slot A for the installation of the encoder board

- 3. Fit the encoder board and make sure that all contacts enter the relevant housing in the signal connector. Fasten the encoder board to the fixing spacers using the screws supplied.
- 4. Configure the DIP-switches and the jumper located on the encoder board based on the connected encoder. Check that the supply voltage delivered to the terminal output is correct.
- 5. Close the inverter frame by reassembling the cover allowing gaining access to the inverter control terminals.

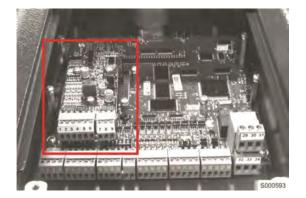


Figure 139: Encoder board fastened to its slot

6.8.5. Terminals in Encoder Board

A 9-POLE TERMINAL BOARD IS LOCATED ON THE FRONT SIDE OF THE ENCODER BOARD FOR THE CONNECTION TO THE ENCODER.

Terminal	Terminal board, pitch 3.81 mm in two separate extractable sections (6-pole and 3-pole sections)			
Terminal	Signal Type and Features			
1	CHA	Encoder input channel A true polarity		
2	CHA	Encoder input channel A inverse polarity		
3	СНВ	Encoder input channel B true polarity		
4	CHB	Encoder input channel B inverse polarity		
5	CHZ	Encoder input channel Z (zero notch) true polarity		
6	CHZ	Encoder input channel Z (zero notch) inverse polarity		
7	+VE	Encoder supply output 5V15V or 24V		
8	GNDE	Encoder supply ground		
9	GNDE	Encoder supply ground		

For the encoder connection to the encoder board, see wiring diagrams on the following pages.

6.8.6. Configuration DIP-switches

Encoder board ES836/2 is provided with two DIP-switch banks to be set up depending on the type of connected encoder. The DIP-switches are located in the front left corner of the encoder board and are adjusted as shown in the figure below.

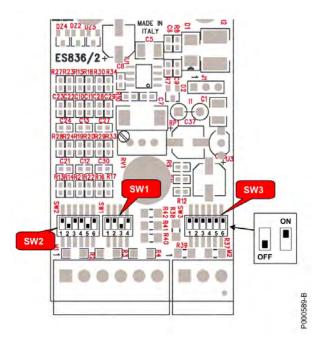


Figure 140: Positions of DIP-switches and their factory-setting

DIP-switch functionality and factory-settings are detailed in the table below.

Switch (factory- setting)	OFF - open	ON - closed
SW2.1	Channel B, NPN or PNP	Channel B, Line driver or Push-Pull (default)
SW2.2	Channel B with complementary signals (default)	Channel B with only one single-ended signal
SW2.3	Channel B with no band limit	Channel B with band limit (default)
SW2.4	Channel Z, NPN or PNP	Channel Z, Line driver or Push-Pull (default)
SW2.5	Channel Z with complementary signals (default)	Channel Z with only one single-ended signal
SW2.6	Channel Z with no band limit	Channel Z with band limit (default)
SW1.1	12V Supply voltage (J1 in pos. 2-3)	5V Supply Voltage (J1 in pos. 2-3) (default)
SW1.2	Channel A, NPN or PNP	Channel A, Line driver or Push-Pull (default)
SW1.3	Channel A with complementary signals (default)	Channel A with only one single-ended signal
SW1.4	Channel A with no band limit	Channel A with band limit (default)
SW3.1		
SW3.2		Load resistors towards ground enabled for all
SW3.3	Load resistors disabled	encoder signals (required for 5V Line driver or
SW3.4	Luau resistors disabled	Push-pull encoders, especially if long cables
SW3.5		are used – default setting)
SW3.6		

CAUTION

Keep SW3 contacts "ON" only if a complementary Push-pull or Line-driver encoder is used (power supply: 5V or 12V). Otherwise, set contacts to OFF.

NOTE

Put ALL contacts in DIP-switch SW3 to ON or OFF. Different configurations may cause the malfunctioning of the encoder board.

6.8.7. Jumper Selecting the Type of Encoder Supply

Two-position jumper J1 installed on encoder board ES836/2 allows setting the encoder supply voltage. It is factory-set to pos. 2-3. Set jumper J1 to position 1-2 to select non-tuned, 24V encoder supply voltage. Set jumper J1 to position 2-3 to select tuned, 5/12V encoder supply voltage. Supply values of 5V or 12V are to be set through DIP-switch SW1.1 (see table above).

6.8.8. Adjusting Trimmer

Trimmer RV1 installed on ES836/2 allows adjusting the encoder supply voltage. This can compensate voltage drops in case of long distance between the encoder and the encoder board, or allows feeding an encoder with intermediate voltage values if compared to factory-set values.

Tuning procedure:

- 1. Put a tester on the encoder supply connector (encoder side of the connecting cable); make sure that the encoder is powered.
- 2. Rotate the trimmer clockwise to increase supply voltage. The trimmer is factory set to deliver 5V and 12V (depending on the DIP-switch selection) to the power supply terminals. For a power supply of 5V, supply may range from 4.4V to 7.3V; for a power supply of 12V, supply may range from 10.3V to 17.3V.

	NOTE	Output voltage cannot be adjusted by trimmer RV1 (jumper J1 in pos. 1-2) for 24V power supply.
<u> </u>	CAUTION	Power supply values exceeding the encoder ratings may damage the encoder. Always use a tester to check voltage delivered from ES836 board before wiring.
1	CAUTION	Do not use the encoder supply output to power other devices. Failure to do so would increase the hazard of control interference and short-circuits with possible uncontrolled motor operation due to the lack of feedback.
	CAUTION	The encoder supply output is isolated from the common terminal of the analog signals incoming to the terminals of the control board (CMA). Do not link the two common terminals together.

6.8.9. Encoder Wiring and Configuration

The figures below show how to connect and configure the DIP-switches for the most popular encoder types.

<u></u>	CAUTION	A wrong encoder-board connection may damage both the encoder and the board.
	NOTE	In all the figures below, DIP-switches SW1.4, SW2.3, SW2.6 are set to ON, i.e. 77 kHz band limit is on. If a connected encoder requires a higher output frequency, set DIP-switches to OFF.
	NOTE	The max. length of the encoder wire depends on the encoder outputs, not on the encoder board (ES836). Please refer to the encoder ratings.
	NOTE	DIP-switch SW1.1 is not shown in the figures below because its setting depends on the supply voltage required by the encoder. Refer to the DIP-switch setting table to set SW1.1.
	NOTE	Zero notch connection is optional and is required only for particular software applications. However, for those applications that do not require any zero notch, its connection does not affect the inverter operation. See Sinus Penta's Programming Guide for details.

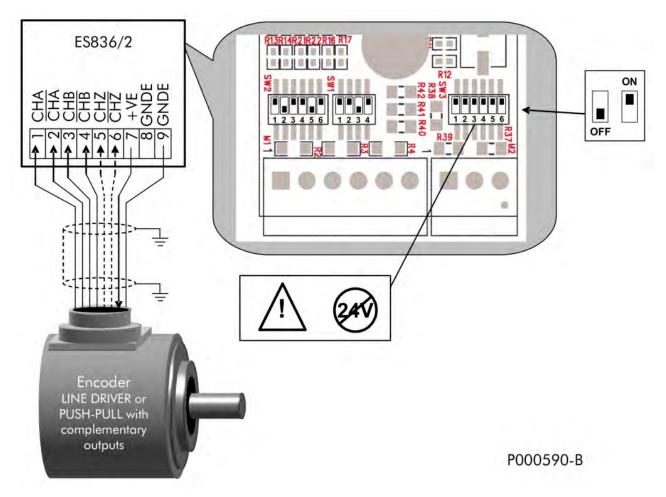


Figure 141: LINE DRIVER or PUSH-PULL encoder with complementary outputs

CAUTION

Put SW3 contacts to ON only if a complementary Push-pull or Line driver encoder is used (power supply: 5V or 12V). If a 24V push-pull encoder is used, put contacts to OFF.

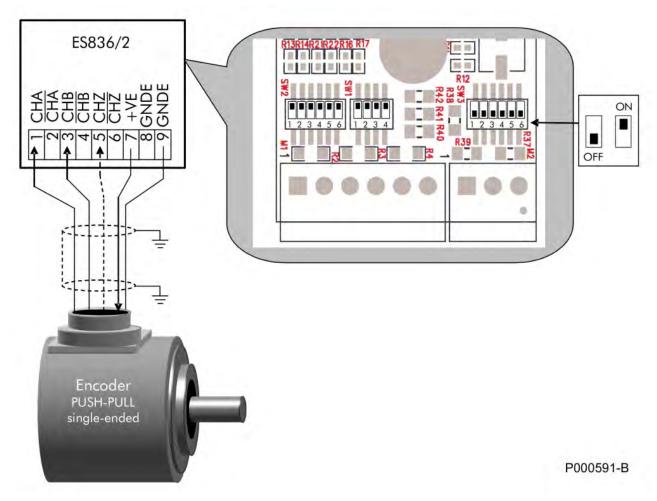


Figure 142: PUSH-PULL encoder with single-ended outputs

CAUTION

Because settings required for a single-ended encoder deliver a reference voltage to terminals 2, 4, 6, the latter are not to be connected. Failures will occur if terminals 2, 4, 6 are connected to encoder conductors or to other conductors.

NOTE

Only push-pull, single-ended encoders may be used, with an output voltage equal to the supply voltage. Only differential encoders may be connected if their output voltage is lower than the supply voltage.

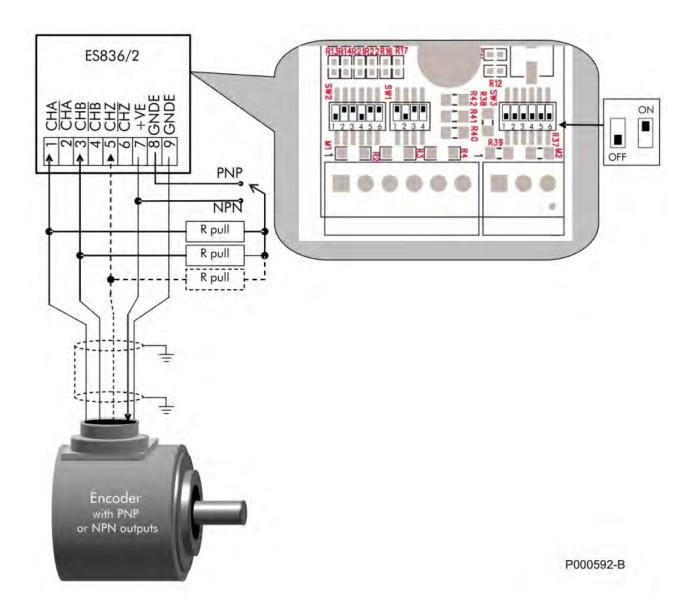


Figure 143: PNP or NPN encoder with single-ended outputs and external load resistors

NOTE

NPN or PNP encoder outputs require a pull-up or pull-down resistive load to the supply or to the common. As load resistor ratings are defined by the manufacturer of the encoder, external wiring is required, as shown in the figure above. Connect the resistor common to the supply line for NPN encoders supply or to the common for PNP encoders.

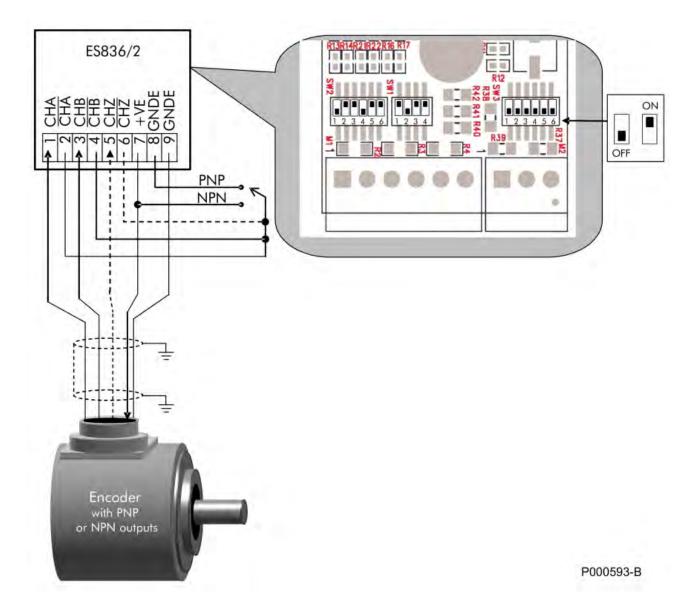


Figure 144: PNP or NPN encoder with single-ended outputs and internal load resistors

NOTE

Incorporated load resistors may be used only if NPN or PNP encoders are compatible with pull-up or pull-down external resistors (4.7k Ω).

NOTE

NPN or PNP encoders cause pulse distortions due to a difference in ramp up and ramp down edges. Distortion depends on the load resistor ratings and the wire stray capacitance. PNP or NPN encoders should not be used for applications with an encoder output frequency exceeding a few kHz dozens. For such applications, use encoders with Push-Pull outputs, or better with a differential line-driver output.

6.8.10. Wiring the Encoder Cable

Use a shielded cable to connect the encoder to its control board; shielding should be grounded to both ends of the cable. Use the special clamp to fasten the encoder wire and ground the cable shielding to the inverter.

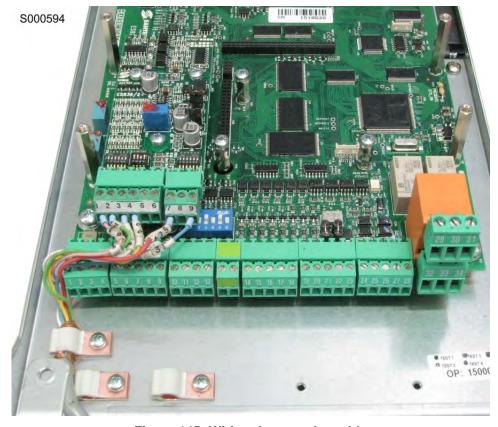


Figure 145: Wiring the encoder cable

Do not stretch the encoder wire along with the motor supply cable.

Connect the encoder directly to the inverter using a cable with no intermediate devices, such as terminals or return connectors.

Use a model of encoder suitable for your application (as for connection length and max. rev number).

Preferably use encoder models with complementary LINE-DRIVER or PUSH-PULL outputs. Non-complementary PUSH-PULL, PNP or NPN open-collector outputs offer a lower immunity to noise.

The encoder electrical noise occurs as difficult speed adjustment or uneven operation of the inverter; in the worst cases, it can lead to the inverter stop due to overcurrent conditions.

6.9. ES913 Line Driver Encoder Board (Slot A)

Board for incremental, bidirectional encoder to be used as a speed feedback for the inverters of the SINUS series. It allows the acquisition of encoders with power supply ranging from 5 to 24VDC (adjustable output voltage) with line driver outputs.

The encoder board is to be installed into SLOT A. See Installing the Line Driver Board on the Inverter (Slot A).

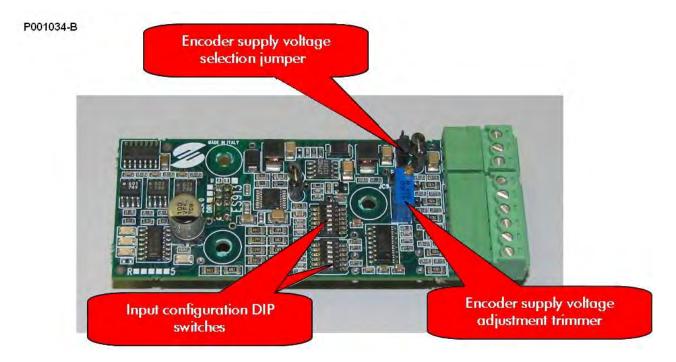


Figure 146: ES913 Encoder board

6.9.1. Identification Data

Description	Part Number	COMPATIBLE ENCODERS	
Description	Part Number	POWER SUPPLY	OUTPUT
HTL Encoder board	ZZ0095837	5Vdc÷24Vdc	LINE DRIVER

6.9.2. Environmental Requirements

Operating temperature	-10 to +55°C ambient temperature (contact Elettronica Santerno
	for higher ambient temperatures)
Relative humidity	5 to 95% (non-condensing)
Max. operating altitude	2000 m a.s.l. For installation above 2000 m and up to 4000 m,
	please contact Elettronica Santerno.

6.9.3. Electrical Specifications

Decisive voltage class A according to EN 61800-5-1

Electrical Specifications		Value			
		Тур.	Мах.	Unit	
Encoder supply current, + 24 V, protected with resettable fuse			200	mA	
Electronically protected encoder supply current, +12V			400	mA	
Electronically protected encoder supply current, +5V			1000	mA	
Adjustment range for encoder supply voltage (5V mode)	4.4	5.0	7.3	V	
Adjustment range for encoder supply voltage (12V mode)	10.4	12.0	17.3	V	
Input channels	Three c	hannels:	A, B an	d zero	
		notc	h Z		
Type of input signals	Compl	ementar	y (line d	river)	
Voltage range for encoder input signals	4		30	V	
Pulse max. frequency with noise filter "On"	77kHz	(1024pls	a 450	0rpm)	
Pulse max. frequency with noise filter "Off"	155kHz (1024pls @ 9000rpm)				

ISOLATION:

The encoder supply line and inputs are galvanically isolated from the inverter control board grounding for a 500VAC test voltage for 1 minute. The encoder supply grounding is in common with control board digital inputs available in the terminal board.

6.9.4. Installing the Line Driver Board on the Inverter (Slot A)

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal capacitors to avoid any electric shock hazard.

CAUTION

Electric shock hazard: do not connect/disconnect the signal terminals or the power terminals when the inverter is on. This also prevents the inverter from being damaged.

NOTE

All the screws used to fasten removable parts (terminals cover, serial interface connector, cable plates, etc.) are black, round-head, cross-head screws. When wiring the inverter, remove only this type of screws. If different screws or bolts are removed, the inverter warranty will be no longer valid.

- 1) Remove voltage from the inverter and wait at least 20 minutes.
- 2) Remove the cover allowing gaining access to the inverter control terminals. The fixing spacers and the signal connector are located on the left.

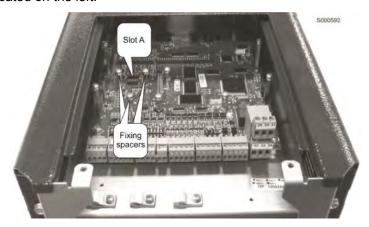


Figure 147: Position of slot A for the installation of the encoder board

Fit the encoder board and make sure that all contacts enter the relevant housing in the signal connector. Fasten the encoder board to the fixing spacers using the screws supplied.

- 4) Configure the DIP-switches and the jumper located on the encoder board based on the connected encoder. Check that the supply voltage delivered to the terminal output is correct.
- 5) Power on the inverter and set up parameters relating to the encoder feedback (see Sinus Penta's Programming Instructions manual).

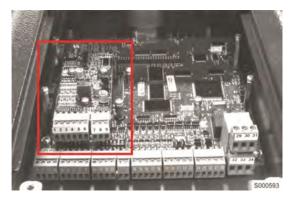


Figure 148: Encoder board fastened to its slot

6.9.5. Terminals in the Line Driver Encoder Board

A 9-pole terminal board is located on the front side of the encoder board for the connection to the encoder.

Termina	Terminal board, pitch 3.81mm in two separate extractable sections (6-pole and 3-pole sections)		
Terminal	erminal Signal Type and Features		
1	CHA	Encoder input channel A true polarity	
2	CHA	Encoder input channel A inverse polarity	
3	CHB	Encoder input channel B true polarity	
4	CHB	Encoder input channel B inverse polarity	
5	CHZ	Encoder input channel Z (zero notch) true polarity	
6	CHZ	Encoder input channel Z (zero notch) inverse polarity	
7	+VE	Encoder supply output 5V15V or 24V	
8	GNDE	Encoder supply ground	
9	GNDE	Encoder supply ground	

For the encoder connection to the encoder board, see wiring diagrams on the following pages.

6.9.6. Configuration DIP-switches

The encoder board (ES913) is provided with two DIP-switch banks. The DIP-switches are located in the front left corner of the board and are adjusted as shown in the figure below.

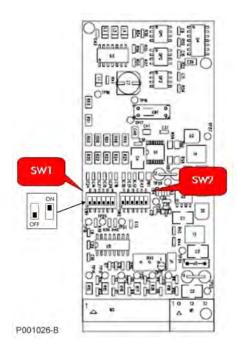


Figure 149: Location of the configuration DIP-switches

DIP-switch functionality and factory-settings are detailed in the table below.

SW1.1	SW1.2	
OFF	OFF	Channel A band limit disabled
OFF	ON	Min. channel A band limit
ON	OFF	Average channel A band limit
ON	ON	Max. channel A band limit (default)

SW1.3	SW1.4	
OFF	OFF	Channel B band limit disabled
OFF	ON	Min. channel B band limit
ON	OFF	Average channel B band limit
ON	ON	Max. channel B band limit (default)

SW1.5	SW1.6	
OFF	OFF	Channel Z band limit disabled
OFF	ON	Min. channel Z band limit
ON	OFF Average channel Z band limit	
ON	ON	Max. channel Z band limit (default)

	OFF	Termination resistor between A and A# = 13.6kΩ (default)
SW2.1	ON	Termination resistor between A and A# = 110Ω (only for input signals at 5V)
	OFF	Termination resistor between B and B # = 13.6kΩ (default)
SW2.2	ON	Termination resistor between B and B # = 110Ω (only for input signals at 5V)
	OFF	Termination resistor between Z and Z# = 13.6kΩ (default)
SW2.3	ON	Termination resistor between Z and $Z# = 110\Omega$ (only for input signals at 5V)
CIA/O A	OFF	Termination capacitor between A and A# off
SW2.4	ON	Termination capacitor between A and A# = 110pF (default)
CIA/O E	OFF	Termination capacitor between B and B# off
SW2.5	ON	Termination capacitor between B and B# = 110pF (default)
SW2.6	OFF	Termination capacitor between Z and Z# off
	ON	Termination capacitor between Z and Z# = 110pF (default)

CAUTION

Do not select any termination resistor equal to 110Ω for encoder signal amplitude over 7.5V.

6.9.7. Encoder Supply Selection Jumper

Jumpers J1 and J2 select the encoder voltage supply among +5V, +12V, +24V:

Jumper J1 Jumper J2		Encoder Supply Voltage		
X	2-3	+24V		
Open	1-2	+12V		
Closed (default)	1-2 (default)	+5V		

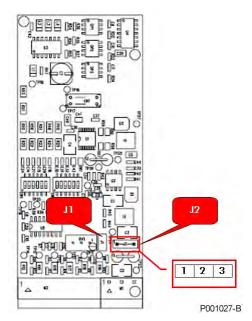


Figure 150: Location of the jumpers selecting the encoder supply voltage

6.9.8. Adjusting Trimmer

Trimmer RV1 located on ES913 board allows adjusting the encoder supply voltage. This can compensate voltage drops in case of long distance between the encoder and the encoder board, or allows feeding an encoder with intermediate voltage values if compared to factory-set values.

Tuning procedure:

- 1. Put a tester on the encoder supply connector (encoder side of the connecting cable); make sure that the encoder is powered.
- 2. Rotate the trimmer clockwise to increase supply voltage. The trimmer is factory set to deliver 5V and 12V (depending on the DIP-switch selection) to the power supply terminals. For a power supply of 5V, supply may range from 4.4V to 7.3V; for a power supply of 12V, supply may range from 10.4V to 17.3V.

NOTE

The output voltage cannot be adjusted by trimmer RV1 (jumper J1 in pos. 1-2) for 24V power supply.

CAUTION

Power supply values exceeding the encoder ratings may damage the encoder. Always use a tester to check voltage delivered from the ES913 board before wiring.

CAUTION

Do not use the encoder supply output to power other devices. Failure to do so will increase the hazard of control interference and short-circuits with possible uncontrolled motor operation due to the lack of feedback.

CAUTION

The encoder supply output is isolated from the common terminal of the analog signals incoming to the terminals of the control board (CMA). Do not link the two common terminals together.

6.10. <u>ES822 Isolated Serial Board (Slot B)</u>

The isolated serial board RS232/485 controlling Sinus Penta inverters allows connecting a computer through RS232 interface or allows a multidrop connection of Modbus devices through RS485 interface. It provides galvanic isolation of interface signals relating to both the control board ground and the terminal board common of the control board.

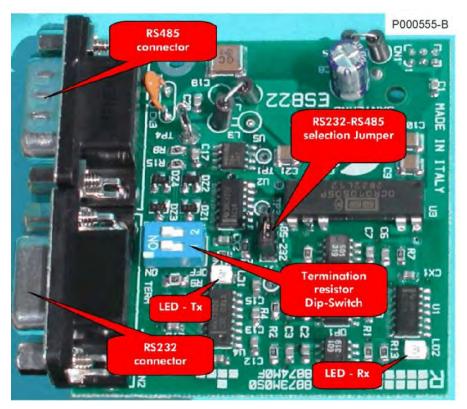


Figure 151: ES822 board

6.10.1. Identification Data

Description	Part Number	
Isolated serial board - RS232/485	ZZ0095850	

6.10.2. Environmental Requirements

Operating temperature	-10 to +55°C ambient temperature (contact Elettronica Santerno for
	higher ambient temperatures)
Relative humidity	5 to 95% (non-condensing)
Max. operating altitude	2000 m a.s.l. For installation above 2000 m and up to 4000 m,
	please contact Elettronica Santerno.

6.10.3. Electrical Features

WIRING:

Once ES822 board is fitted, connector RS485 installed on the inverter will automatically disable. D-type, 9-pole male connector (RS485) or female connector (RS232-DTE) located on ES822 board activate depending on the position of J1.

Contacts of CN3, D-type, 9-pole male connector (RS485) are as follows:

Decisive voltage class A according to EN 61800-5-1.

PIN	FUNCTION
1 - 3	(TX/RX A) Differential input/output A (bidirectional) according to standard RS485. Positive polarity
	in respect to pins 2 – 4 for one MARK.
2 - 4	(TX/RX B) Differential input/output B (bidirectional) according to standard RS485. Negative polarity
	in respect to pins 1 – 3 for one MARK.
5	(GND) control board zero volt
6 - 7	Not connected
8	(GND) control board zero volt
9	+5 V, max 100mA for the power supply of an auxiliary RS485/RS232 converter (if any)

Contacts of CN2, D-type, 9-pole female connector (RS232-DCE) are as follows:

Decisive voltage class A according to EN 61800-5-1.

PIN	FUNCTION
1 - 9	Not connected
2	(TX A) Output according to standard RS232
3	(RX A) Input according to standard RS232
5	(GND) zero volt
4 - 6	To be connected together for loopback DTR-DSR
7 - 8	To be connected together for loopback RTS-CTS

6.10.4. Installing ES822 Board on the Inverter (Slot B)

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal capacitors to avoid any electric shock hazard.

CAUTION

Electric shock hazard: do not connect/disconnect the signal terminals or the power terminals when the inverter is on. This also prevents the inverter from being damaged.

NOTE

All the screws used to fasten removable parts (terminals cover, serial interface connector, cable plates, etc.) are black, round-head, cross-head screws. When wiring the inverter, remove only this type of screws. If different screws or bolts are removed, the inverter warranty will be no longer valid.

- 1. Turn off the inverter and wait at least 20 minutes.
- 2. Remove the cover to access to the inverter control terminals. The fixing spacers for the encoder board and signal connector are located on the right.

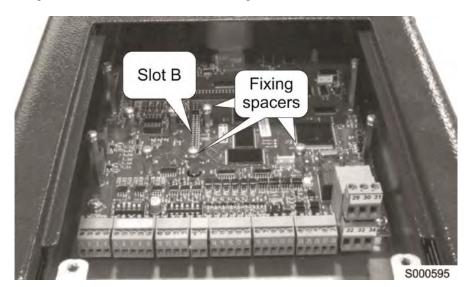


Figure 152: Position of the slot for the installation of the serial isolated board

- 3. Fit ES822 board and make sure that all contacts enter the relevant housing in the signal connector. Fasten the encoder board to the fixing spacers using the screws supplied.
- 4. Configure DIP-switches and the jumper located on the encoder board based on the connected encoder.
- 5. Close the inverter frame by reassembling the cover allowing gaining access to the inverter control terminals.

6.10.5. Jumper for RS232/RS485 Selection

Jumper J1 sets ES822 board to operate as RS485 interface or as RS232 interface. The corresponding positions are silk-screened on the board.

With a jumper between pins 1-2, CN3-(RS485) is enabled (default).

With a jumper between pins 2-3, CN2-(RS232) is enabled.

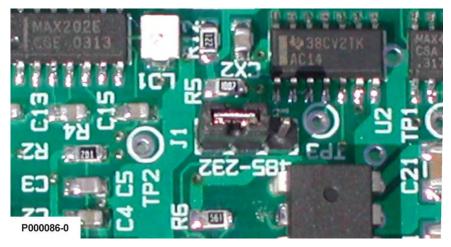


Figure 153: Jumper setting RS232/RS485

6.10.6. DIP-switch for RS485 Terminator

Please refer to the Serial Communications section.

For serial link RS485 in ES822 board, the line terminator is selected through DIP-switch SW1 as shown in the figure below.

When the line master (computer) is located at the beginning or at the end of the serial link, the line terminator of the farthest inverter from the master computer (or the only inverter in case of direct connection to the master computer) shall be enabled.

Line terminator enables by setting selector switches 1 and 2 to ON in DIP-switch SW1. The line terminator of the other inverters in intermediate positions shall be disabled: DIP-switch SW1, selector switches 1 and 2 in position OFF(default setting).

In order to use RS232-DTE link, no adjustment of DIP-switch SW1 is required.

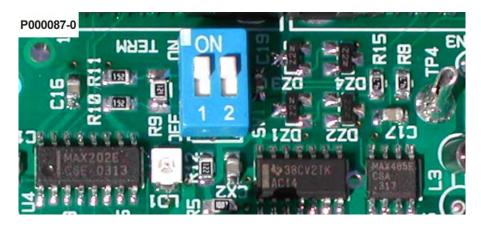


Figure 154: Configuration of terminator DIP-switch for line RS485

6.11. Option Boards For Fieldbus (Slot B)

Several interface boards (optional) are available for the connection of the inverters of the Sinus PENTA series to automation systems based on Fieldbus. Option boards allow interfacing systems based on:

- Profibus-DP[®]
- PROFIdrive®.
- DeviceNet® (CAN),
- CANopen® (CAN),
- Ethernet (MODBUS TCP/IP),
- Interbus[®],
- ControlNet®
- Lonworks[®].

The inverters of the Sinus PENTA series can house only one option board per fieldbus. This board allows controlling the inverter through the desired bus starting from a control device (PLC, industrial computer, etc.). The control method from fieldbus integrates the control methods from local terminals, remote terminals (through MODBUS serial link) and from keypad, which are provided from the inverter. For more details on the inverter command modes and the possible matching among the different sources, refer to the Sinus Penta's Programming Guide (Control Method menu and Fieldbus menu).

The sections below cover the installation procedure and the configuration and diagnostics of the different types of option boards.

NOTE

The read/write scan rate for Sinus Penta drives is 2ms. Please refer to the Programming Guide for details.

CAUTION

Other communications protocols are available. Please refer to ES919 Communications Board (Slot B).

6.11.1. Identification Data

Each kit including option boards for fieldbuses also includes a CD-ROM containing detailed documentation (instruction manuals in English, utilities and configuration files), which is required for the inverter configuration and integration to the automation system based on fieldbus.

Type of Fieldbus	Part Number	
Profibus-DP [®]	ZZ4600045	
PROFIdrive [®]	ZZ4600042	
DeviceNet [®]	ZZ4600055	
Interbus [®]	ZZ4600060	
CANOpen [®]	ZZ4600070	
ControlNet [®]	ZZ4600080	
Lonworks®	ZZ4600085	
Ethernet+IT	ZZ4600100	

NOTE

The Interbus, ControlNet and Lonworks boards are not described in this manual.

Please refer to the CD-ROM supplied in the kit.

6.11.2. Installing the Fieldbus Board on the Inverter (Slot B)

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal capacitors to avoid any electric shock hazard.

CAUTION

Electric shock hazard: do not connect/disconnect the signal terminals or the power terminals when the inverter is on. This also prevents the inverter from being damaged.

NOTE

All the screws used to fasten removable parts (terminals cover, serial interface connector, cable plates, etc.) are black, round-head, cross-head screws. When wiring the inverter, remove only this type of screws. If different screws or

- 1) Remove voltage from the inverter and wait at least 20 minutes.
- 2) The electronic components in the inverter and the communications board are sensitive to electrostatic discharge. Be careful when you reach the component parts inside the inverter and when you handle the communications board. The board should be installed in a workstation equipped with proper grounding and provided with an antistatic surface. If this is not possible, the installer must wear a ground bracelet properly connected to the PE conductor.

bolts are removed, the inverter warranty will be no longer valid.

3) Loosen the two front screws located in the lower part of the inverter cover to remove the covering of the terminal board. In the PENTA's control board, you can then reach the slot B, where you can install the Profibus communications board.

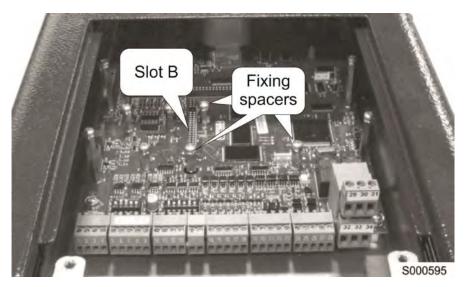


Figure 155: Location of the slot B inside the terminal board cover of the Sinus PENTA inverters

4) Insert the communications board in the slot B; make sure that the connector bar in the board is inserted in the front part of the slot only, and that the last 6 pins are not connected. If installation is correct, the three fastening holes will match with the housings of the fastening screws for the fixing spacers. Tighten the board fixing screws as shown in Figure 156 and Figure 157.

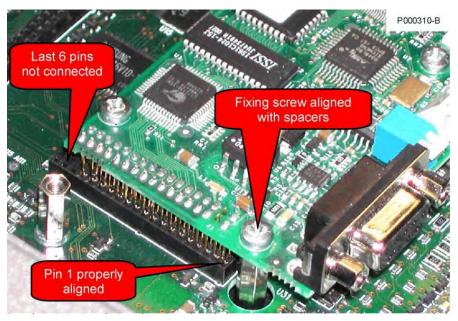


Figure 156: Checking contacts in the slot B

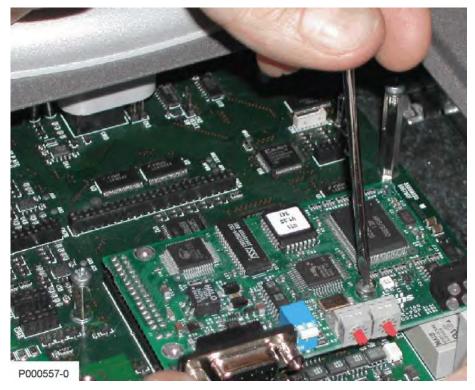


Figure 157: Fastening the communications board to slot B

- 5) Configure the DIP-switches and rotary-switches following the instructions given in the relevant section.
- 6) Connect the Fieldbus cable by inserting its connector or by connecting the wires to the terminals.
- 7) Close the inverter frame by reassembling the cover allowing gaining access to the inverter control terminals.

6.11.3. Fieldbus PROFIBUS-DP® Board

PROFIBUS-DP® is a registered trademark of PROFIBUS International.

The Profibus communications board allows interfacing between an inverter of the Sinus PENTA Series and an external control unit, such as a PLC, using a PROFIBUS-DP communications interface.

The Sinus PENTA inverter operates as a Slave device and is controlled by a Master device (PLC) through command messages and reference values which are equivalent to the ones sent via terminal board. The Master device is also capable of detecting the operating status of the inverter. More details about Profibus communications are given in the Sinus Penta's Programming Guide.

Profibus communications board has the following features:

- Type of fieldbus: PROFIBUS-DP EN 50170 (DIN 19245 Part 1) with protocol version 1.10
- Automatic detection of the baud rate ranging from 9600 bits/s to 12 Mbits/s
- Communications device: PROFIBUS bus link, type A or B as mentioned in EN50170
- Type of fieldbus: Master-Slave communications; max. 126 stations in multidrop connection
- Fieldbus connector: female, 9-pin, DSUB connector
- Wire: copper twisted pair (EIA RS485)
- Max. length of the bus: 200m @ 1.5Mbits/s (can be longer if repeaters are used)
- Isolation: the bus is galvanically isolated from the electronic devices via a DC/DC converter
- The bus signals (link A and link B) are isolated via optocouplers
- PROFIBUS –DP communications ASIC: chip Siemens SPC3
- · Hardware configurability: bus terminator switch and rotary-switch assigning the address to the node
- Status indicators: indicator Led for board status and indicator Led for fieldbus status.

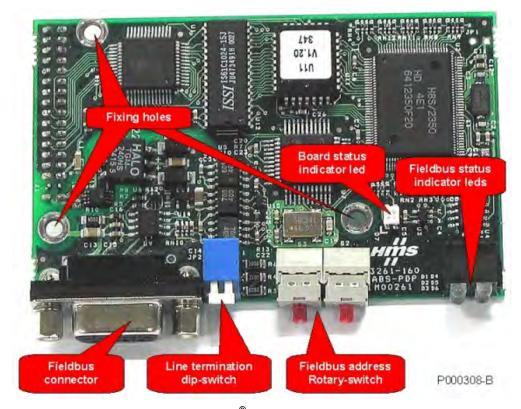


Figure 158: PROFIBUS-DP® fieldbus communications board

6.11.3.1. Profibus® Fieldbus Connector

Female, 9-pin, D-sub connector.

Pin location:

N.	Name	Description
-	Shield	Connector frame connected to PE
1	N.C.	
2	N.C.	
3	B-Line	Positive RxD/TxD according to RS 485 specifications
4	RTS	Request To Send – active high level when sending
5	GND	Bus ground isolated from control board 0V
6	+5V	Bus driver supply isolated from control board circuits
7	N.C.	
8	A-Line	Negative RxD/TxD according to RS 485 specifications
9	N.C.	

6.11.3.2. Configuration of the Profibus-DP Communications Board

PROFIBUS-DP communications board is provided with one DIP-switch and two rotary-switches used to set the operating mode.

The DIP-switch located next to the fieldbus connector allows activating the line terminator. The terminator is activated by pushing the lever downwards, as shown below.

Fieldbus terminator on	Termination of Fieldbus line cut out		
ON	ON		

The termination of the fieldbus line should be cut in only with the first and last device of a chain, as illustrated in Figure 159.

The figure shows a common configuration where the first device is the Master (PLC, Bus Bridge or Repeater), but this device can be connected also in central position. Anyway, the rule stating that termination should always be connected to first or last device, is always valid.

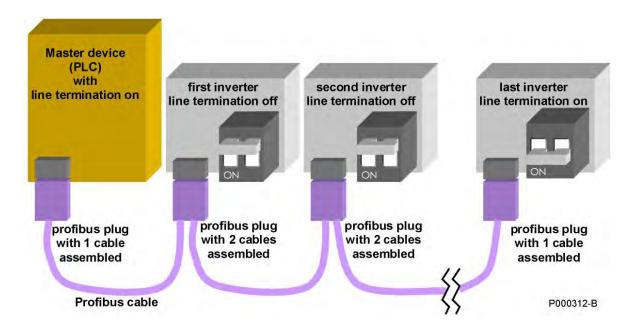


Figure 159: Example of a Profibus network (the correct setting of the line terminators is highlighted)

Each device in the network must have its own Profibus address. The addresses of the inverters of the Sinus PENTA series are set through the rotary-switches installed in the interface board. Each rotary-switch is provided with a pin that can be turned to position 0-9 using a small screwdriver.

The rotary-switch on the left sets the tenths of the Profibus address, while the rotary switch on the right sets the units. Figure 160 shows an example of the correct position to set address "19".

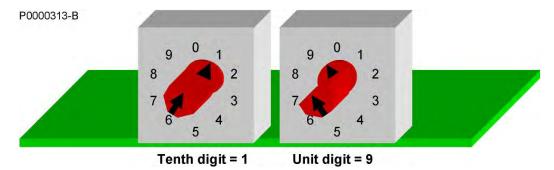


Figure 160: Example of the rotary-switch position to set Profibus address "19"

NOTE

The rotary-switches allow setting Profibus addresses ranging from 1 to 99. Addresses exceeding 99 are not yet allowed.

6.11.3.3. Connection to the Fieldbus

Make sure that wiring is correct, especially if the fieldbus operates at high baud rates (higher than or equal to 1.5Mb/s).

Figure 159 is an example of a Profibus link connecting multiple devices.

Use special Profibus cables ("Profibus Standard Bus Cable", Type A); do not exceed the max. allowable connection length based on the baud rate; use proper connectors.

The table below shows the standard baud rate values and the corresponding max. length of the bus if cables of Type A are used.

Allowable Baudrate	Max. Length for Cable of Type A	
9.6 kbits/s	1.2 km	
19.2 kbits/s	1.2 km	
45.45 kbits/s	1.2 km	
93.75 kbits/s	1.2 km	
187.5 kbits/s	1 km	
500 kbits/s	400 m	
1.5 Mbits/s	200 m	
3 Mbits/s	100 m	
6 Mbits/s	100 m	
12 Mbits/s	100 m	

We recommend that Profibus FC (FastConnect) connectors be used. They offer the following benefits:

- No welding required for the connections inside the cable
- One ingoing cable and one outgoing cable can be used, so that connections of intermediate nodes can be stubless, thus avoiding signal reflections
- The internal resistors can be connected through a switch located on the connector frame
- Profibus FC connectors are provided with an internal impedance adapting network to compensate for the connector capacity.

NOTE

NOTE

NOTE

If you use Profibus FC connectors with internal terminators, you can activate either the connector terminal or the board terminals (in the first/last device only). Do not activate both terminators at a time and do not activate terminators in intermediate nodes.

A more comprehensive overview of the Profibus is given at http://www.profibus.com/. In particular, you can download the "Installation Guideline for PROFIBUS DP/FMS", containing detailed wiring information, and the document named "Recommendations for Cabling and Assembly" containing important guidelines to avoid the most common wiring errors.

6.11.4. PROFIdrive® Fieldbus Board

PROFIdrive® is a registered trademark of PROFIBUS International.

Any detail is given in the PROFIdrive Communications Board - Installation and Programming Instructions. As per the board configuration, please refer to the Configuration of the Profibus-DP Communications Board section.

6.11.5. DeviceNet® Fieldbus Board

DeviceNet is a registered trademark of open DeviceNet Vendor Association.

The DeviceNet[®] communications board allows interfacing a Sinus PENTA drive with an external control unit through a communications interface using a CAN protocol of the DeviceNet 2.0 type. The baud rate and the MAC ID can be set through the on-board DIP-switches. Max. 512 bytes for input/output data are available; some of them are used for the interfacing with the inverter. Refer to the Sinus Penta's Programming Guide for more details on the inverter control modes through the DeviceNet fieldbus board.

The main features of the interface board are the following:

- Baud Rate: 125, 250, 500 kbits/s
- DIP-switch for baud rate and MAC ID selection
- Optically isolated DeviceNet interface
- Max. 512 bytes for input & output data
- Max. 2048 bytes for input & output data through mailbox
- DeviceNet Specification version: Vol 1: 2.0, Vol 2: 2.0
- Configuration test version: A-12

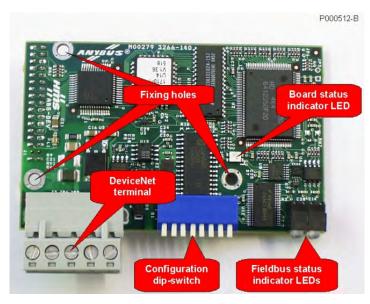


Figure 161: DeviceNet® Fieldbus communications board

6.11.5.1. DeviceNet® Fieldbus Terminals

The DeviceNet Fieldbus communications board is provided with a removable, screwable terminal board (pitch 5.08). The bus interface circuitry has an external supply of 24VDC $\pm 10\%$, as prescribed from the CAN DeviceNet specifications.

Terminal arrangement as stated in the table:

N.	Name	Description
1	V-	Negative voltage for bus supply
2	CAN_L	CAN_L bus line
3	SHIELD	Cable shielding
4	CAN_H	CAN_H bus line
5	V+	Positive voltage for bus supply

6.11.5.2. Board Configuration

The on-board DIP-switches allow setting the baud rate and the MAC ID identifying the device in the DeviceNet network.

DIP-switches 1 and 2 allow setting the baud rate, that must be the same for all the related devices. The DeviceNet standard allows three baud rates: 125, 250 and 500 kbits/s. Possible settings are the following:

Baudrate	Setting of SW.1 & SW.2		
125 kbits/s	sw.1=OFF	sw.2=OFF	
250 kbits/s	sw.1=OFF	sw.2=ON	
500 kbits/s	sw.1=ON	sw.2=OFF	

The MAC ID can be set between 0 and 63 by entering the configuration of the binary number for six DIP-switches, from sw.3 to sw.8. The most significant bit (MSB) is set through sw.3, while the least significant bit (LSB) is set through sw.8.

Some possible settings are shown in the table below:

MAC ID	SW.3 (MSB)	SW.4	SW.5	SW.6	SW.7	SW.8 (LSB)
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
3	OFF	OFF	OFF	OFF	ON	ON
			••••			
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

If multiple devices are connected to the same bus, different MAC IDs are to be set.

6.11.5.3. Connection to the Fieldbus

The wiring quality is fundamental for the best reliability of the bus operation. The higher the baud rates, the shortest the bus lengths allowed.

Reliability is strongly affected by the type of wiring and the wire topology. The DeviceNet standard allows four types of wires based on the type of related devices. It also allows connecting signal dispatching nodes, line terminators and supply couplers. Two types of lines are defined: the trunk line and the drop lines. The figure below illustrates the topology of a typical DeviceNet trunk line.

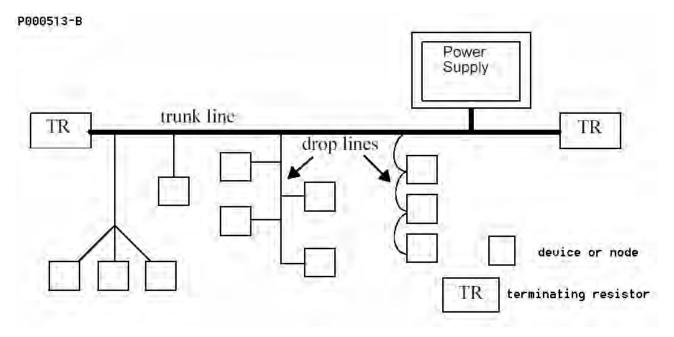


Figure 162: Outline of the topology of a DeviceNet trunk line

The inverter equipped with a DeviceNet interface board is typically connected through a drop line consisting of a 5-conductor shielded cable. The DeviceNet standard defines three shielded cables based on their diameter: THICK, MID, and THIN cables. The maximum electric length between two DeviceNet devices depends on the baud rate and the type of cable being used. The table below shows the maximum lengths that are recommended based on these variables. The FLAT cable can be used for the main trunk line if drop lines are connected through a system that does not require welding.

Baud Rate	Max. length with FLAT cable	Max. length with THICK cable	Max. length with MID cable	Max. length with THIN cable
125 kbits/s	420m	500m	300m	100m
250 kbits/s	200m	250m	250m	100m
500 kbits/s	75m	100m	100m	100m

NOTE

Each DeviceNet trunk line must meet some geometric requirements and must provide two terminator nodes and at least one supply node, because devices can be totally or partially powered via the bus. The type of the cable being used also determines the max. supply current available for the bus devices.

NOTE

For a more comprehensive overview of the DeviceNet standard, go to ODVA's home page (http://www.odva.org).

In particular, you can refer to the "Planning and Installation Manual" document.

NOTE

In case of failures or disturbance in the DeviceNet communications, please fill in the "DeviceNet Baseline & Test Report" form in the Appendix C of the "Planning and Installation Manual" before contacting the After-sales service.

6.11.6. CANopen® Fieldbus Board

CANopen® and CiA® are registered trademarks of CAN in Automation e.V.

The CANopen communications board allows interfacing a Sinus PENTA drive with an external control unit using communications interface operating with a CAN protocol of the CANopen type complying with the CIA DS-301 V3.0 specifications. The baud rate and the Device Address can be set through the on-board rotary switches. Eight baud rate levels can be set, up to 1Mbit/s. Refer to the Sinus Penta's Programming Guide for more details on the inverter control modes through the CANopen fieldbus board.

The main features of the interface board are the following:

- Unscheduled data exchange support
- Synch & Freeze operating mode
- Possibility of setting Slave Watch-dog time
- Eight baud rate levels, from 10kbits/s to 1Mbit/s
- Possibility of setting different Device Addresses up to max. 99 nodes
- Optically isolated CAN interface
- CANopen conformity: CIA DS-301 V3.0

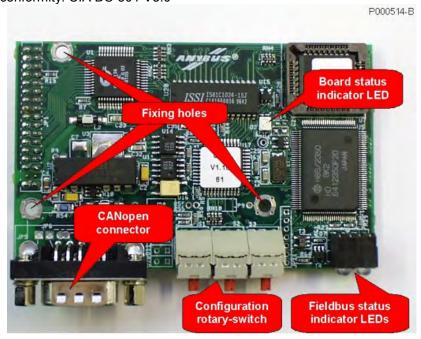


Figure 163: CANopen® fieldbus communications board

6.11.6.1. CANopen® Fieldbus Connector

The CANopen® communications board is provided with a 9-pin male "D" connector. The bus interface circuitry is internally supplied, as prescribed by the CANopen® specifications.

Pins are arranged as follows:

N.	Name	Description	
Shell	CAN_SHLD	Cable shielding	
1	1		
2	CAN_L	CAN_L line	
3	CAN_GND	Common terminal of the CAN driver circuit	
4	-		
5	CAN_SHLD	Cable shielding	
6	GND	Option common terminal internally connected to pin 3	
7	CAN_H	CAN_H line	
8	-		
9	(reserved)	do not use	

CAUTION

The CANopen connector is the same type as the connector fitted in all the inverters of the Sinus PENTA series for the Modbus serial communications, but the pin arrangement and the internal circuitry are totally different. Make sure that connectors are not mismatched! A wrong connection of the CANopen connector to the Modbus interface or vice versa can damage the inverter and the other devices connected to the Modbus and CANopen networks.

6.11.6.2. Board Configuration

The CANopen communications board shall be used with three rotary-switches for configuration, which are required to set up the inverter operating mode. The rotary-switches also allow setting the baud rate and the Device Address. The figure below shows the position of the rotary-switches and a setting example with a baud rate of 125kbits/s and a Device Address equal to 29.

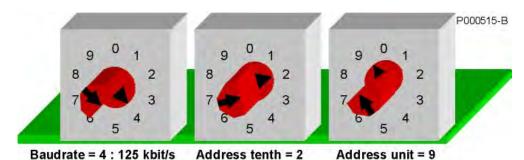


Figure 164: Example of the position of the rotary-switches for 125kbits/s and Device Address 29

NOTE

Device Address = 0 is not allowed by the CANopen specifications. Values ranging from 1 to 99 can be selected.

The table below shows the possible settings of the rotary-switches for the baud rate selection.

Rotary-switch setting	Baudrate		
0	setting not allowed		
1	10 kbits/s		
2	20 kbits/s		
3	50 kbits/s		
4	125 kbits/s		
5	250 kbits/s		
6	500 kbits/s		
7	800 kbits/s		
8	1000 kbits/s		
9	setting not allowed		

6.11.6.3. Connection to the Fieldbus

High quality wiring is fundamental for the correct operation of the bus. For CANopen wiring, a shielded twisted pair with known resistance and impedance is recommended. The conductor unit is also fundamental for the quality of the signal. The higher the baud rates, the shortest the bus lengths allowed. The maximum length of the bus is also affected by the number of nodes. The tables below indicate the cable specifications based on the cable length and the variation features of the max. length based on the number of nodes and the cross-section of the conductors.

Tables refer to copper wires with a characteristic impedance of 120Ω and a typical propagation delay of 5ns/m.

Bus length [m]	Max. specific resistance of the cable [mΩ/m]	Recommended cross-section for conductors [mm²]	Recommended terminator resistance $[\Omega]$	Max. baud rate [Kbit/s]
0÷40	70	0.25÷0.34	124	1000 kbits/s
40÷300	60	0.34÷0.6	150÷300	500 kbits/s (max. 100m)
300÷600	40	0.5÷0.75	150÷300	100 kbits/s (max. 500m)
600÷1000	26	0.75÷0.8	150÷300	50 kbits/s

The total resistance of the cable and number of nodes determine the max. allowable length for the cable as per static features, not for dynamic features. Indeed, the max. voltage delivered by a node with a dominant bus is reduced by the resistive divider consisting of the cable resistor and the terminator resistors. The residual voltage must exceed the dominant voltage of the receiving node. The table below indicates the max. length values based on the cable cross-section, i.e. the cable resistance, and the number of nodes.

Cross-section of the	Max. wiring le	Max. wiring length [m] based on the number of nodes		
conductors [mm ²]	number of nodes < 32	number of nodes < 64	number of nodes < 100	
0,25	200	170	150	
0,5	360	310	270	
0.75	550	470	410	

NOTE

Each CANopen trunk line shall meet particular geometric requirements and shall be equipped with two terminator nodes provided with adequate resistors. Refer to the document CiA DR-303-1 "CANopen Cabling and Connector Pin Assignment" and to all the application notes available from http://www.cancia.org.

6.11.7. Ethernet Board

Ethernet communications board allows interfacing a Sinus PENTA inverter to an external control unit with a communications interface operating with a Modbus/TCP Ethernet (IEEE 802) protocol complying with the Modbus-IDA V1.0 specifications. The IP rating for the communications board can be configured both through the on-board DIP-switches and automatically (network assignation through a DHCP protocol).

The communications board performs automatic negotiation with the mains if the baud rate is set to 10 or 100 Mbits/s.

The main features of the interface board are the following:

- Parameter configuration for Ethernet connection through DIP-switches, DHCP/BOOTP, ARP or internal Web server
- Modbus/TCP slave functions of class 0, class 1 and partially class 2
- Transparent socket interface for potential implementation of "over TCP/IP" dedicated protocols
- Ethernet interface galvanically isolated through a transformer

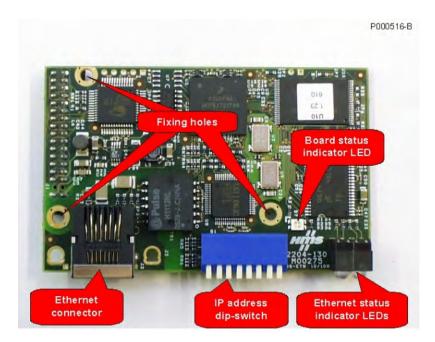
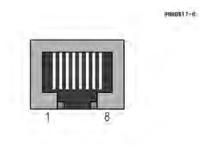


Figure 165: Ethernet Fieldbus Communications Board



6.11.7.1. Ethernet Connector

The board is provided with a standard RJ-45 connector (IEEE 802) for Ethernet connection 10/100 (100Base-T, 10Base-T). The pin arrangement is the same as the one used for each network board computers are equipped with.

Pin arrangement:

N.	Name	Description		
1	TD+	Positive signal transmission line		
2	TD-	Negative signal transmission line		
3	RD+	Line receiving positive signals		
4	Term	Terminated pair – not used		
5	Term	Terminated pair – not used		
6	RD-	Line receiving negative signals		
7	Term	Terminated pair – not used		
8	Term	Terminated pair – not used		

6.11.7.2. Connection to the Network

Ethernet interface board can be connected to an Ethernet control device with a Modbus/TCP master protocol (computer or PLC) through a LAN (Ethernet business network) or a direct point-to-point connection. The board connection through a LAN is similar to a computer connection. Use a standard cable for a Switch or Hub connection or a Straight-Through Cable TIA/EIA-568-B of class 5 UTP (Patch cable for LAN).

NOTE

The Ethernet interface board cannot be connected to old LANs using Thin Ethernet (10base2) coaxial cables. Connection to this type of LANs is possible using a Hub provided with both Thin Ethernet (10base2) connectors and 100Base-T or 10Base-T connectors. The LAN topology is a star one, with each node connected to the Hub or the Switch through its cable.

The figure below shows the pair arrangement in a 5 UTP cable and the standard colour arrangement to obtain the Straight-Through cable.

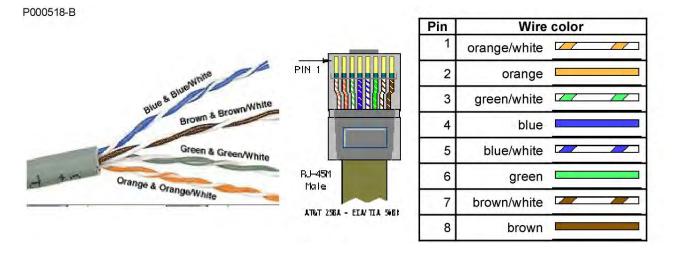


Figure 166: Cable of Cat. 5 for Ethernet and standard colour arrangement in the connector

Direct point-to-point connection is obtained with a Cross-Over Cable TIA/EIA-568-B, cat. 5. This type of cable performs a cross-over of the pairs so that the TD+/TD- pair corresponds to the RD+/RD- pair, and vice versa.

The table below shows the colour matching on the connector pins for the Cross-Over Cable and the cross-over diagram of the two pairs used from 100Base-T or 10Base-T connection.

Pin and wire colour (first part of the connector)			Pin and wire colour (last part of the connector)			
1	white/orange	// // •		→ 1	white/green	// //
2	orange	•	\times	→ 2	green	
3	white/green	// // /		→ 3	white/orange	// //
4	blue		X	4	white/brown	
5	white/blue			5	brown	
6	green	4		→ 6	orange	
7	white/brown			7	blue	
8	brown			8	white/blue	// //

NOTE

The inverter is typically installed with other electric/electronic devices inside a cubicle. Normally, the electromagnetic pollution inside the cubicle is remarkable and is due to both radiofrequency disturbance caused by the inverters and to bursts caused by the electromechanical devices. To avoid propagating disturbance to Ethernet cables, they must be segregated and kept as far as possible from the other power cables and signal cables in the cubicle.

Disturbance propagation to Ethernet cables may affect the correct operation of the inverter and the other devices (computers, PLCs, Switches, Routers) connected to the same LAN.

NOTE

The maximum length of the LAN cable, cat. 5 UTP allowed by IEEE 802 standards results from the max. transit time allowed from the protocol and is equal to 100m. The longer the cable length, the higher the risk of communications failure.

NOTE

For Ethernet wiring, only use cables certified for LAN cables of 5 UTP category or higher. For standard wiring, avoid creating your own cables; Straight-Through or Cross-Over cables should be purchased from an authorised dealer.

NOTE

For a proper configuration and utilisation of the communications board, the user should know the basics of the TCP/IP protocol and should get familiar with the MAC address, the IP address and the ARP (Address Resolution Protocol). The basic document on the Web is "RFC1180 – A TCP/IP Tutorial".

6.11.8. Board Configuration

The first step in configuring the Ethernet interface board consists in communicating with the board through a computer in order to update the configuration file (etccfg.cfg) stored to the non-volatile memory of the board. The configuration procedure is different if you use a point-to-point connection to the computer, if the board is connected to a LAN that is not provided with a DHCP server and if the board is connected to a LAN that is provided with a DHCP server. The section below covers these types of connection.

NOTE

For the connection to the LAN, consult your network administrator, who can tell if the LAN is provided with a DHCP server. If this is not the case, your network administrator will assign the static IP addresses for each inverter.

Point-to-point connection to the computer

If a point-to-point connection to the computer is used, first configure the network board of the computer by setting a static IP address as 192.168.0.nnn, where nnn is any number ranging from 1 to 254.

To set the static IP address with Windows 2000™ or Windows XP™, open the Network Properties folder; in the field for the properties of the TCP/IP protocol, set the address value, e.g. 192.168.0.1. Figure 167 shows the correct setting of the computer properties for Windows 2000™. Settings are very similar for computers running on Windows XP™.

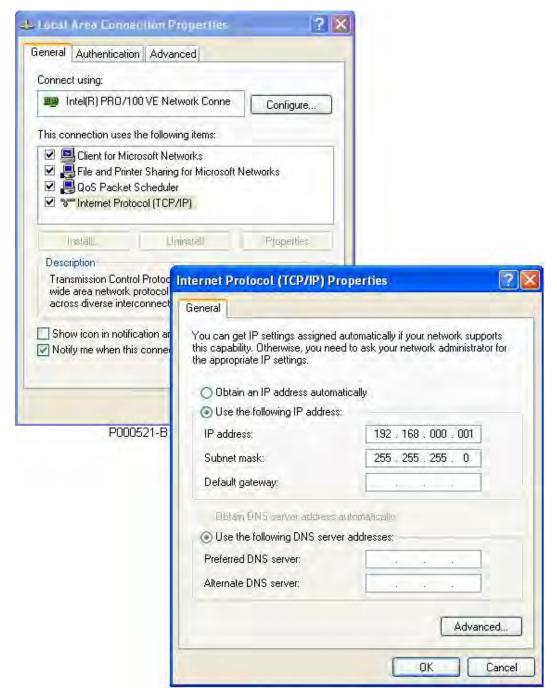


Figure 167: Setting a computer for a point-to-point connection to the inverter

After configuring your computer as described above, in the DIP-switches of the communications board set a binary number different from 0, different from 255 and different from the number set in the low portion of the IP address of the computer. For example, number 2 can be set by lowering (logic 1) only switch 7 as shown in the figure below.

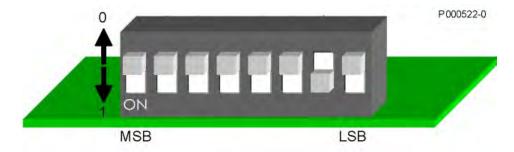


Figure 168: Setting the DIP-switches to set the IP address 192.168.0.2.

If the computer is connected to the inverter through a Cross-Over Cable, a local network is created, which is composed of two participant nodes (the computer and the inverter), with 192.168.0.1 and 192.168.0.2 as IP addresses respectively. When the inverter is powered on, the LINK LED (see below) in the interface board should turn on. The following command:

ping 192.168.0.2

launched by a command line window of the computer performs the correct connection to the board.

Connection with a computer through a LAN without any DHCP server

The network administrator will assign a static IP address for each inverter to be connected to the LAN. Suppose that the IP address assigned from the administrator to an inverter is 10.0.254.177 and proceed as follows:

- Set all the DIP-switches in the Ethernet interface board to 0 ("up" position)
- Connect the board to the LAN using a Straight-Through cable and power on the inverter
- Make sure that the green light of the LINK LED (see below) comes on
- Note down the MAC address of the Ethernet board that is written on a label placed at the bottom of the printed circuit.
 - Suppose that the MAC address of the interface board is 00-30-11-02-2A-02
- In a computer connected to the same LAN (connected to the same sub-network, i.e. with an IP address equal to 10.0.254.xxx), open the command interpreter window and enter the following commands: arp -s 10.0.254.177 00-30-11-02-2A-02

ping 10.0.254.177

- arp -d 10.0.254.177

In the ARP table of the computer, the first command will create a static entry assigning the matching between the MAC address of the board and the static IP address.

The ping command queries the interface board to check the connection and returns the transit time of the data packet between the computer and the board through the network, as shown in Figure 169.

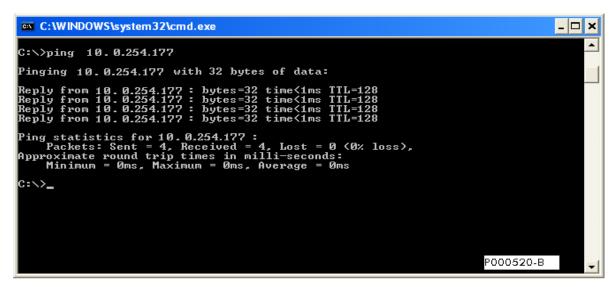


Figure 169: Example of the ping command to the IP address of the inverter interface board

When the interface board is sent the data packet, it gets the MAC address-IP address match as a permanent match, then it compiles and saves an "ethcfg.cfg" file, where the IP address 10.0.254.177 is stored as its own address each time the inverter is turned on.

Command number 3 is optional and removes the static match IP-MAC related to the inverter Ethernet board from the ARP table of the inverter.

Connection with a computer through a LAN equipped with a DHCP server

If an inverter equipped with an Ethernet board is connected to the LAN and if all the DIP-switches are set to zero ("up" position), when the inverter is powered on, automatic negotiation with the DHCP server takes place and the inverter is assigned an IP address chosen among the available ones. This configuration is then stored to the "ethcfg.cfg" file.

The "Anybus IP config" utility contained in the CD-ROM can be used to query all the inverters with an Ethernet interface in the LAN from the same computer and, if required, the network access parameters can be reconfigured. The figure below shows the page of the programme when an inverter is acknowledged. Multiple inverters can be identified from the same network through their own value of the MAC address.

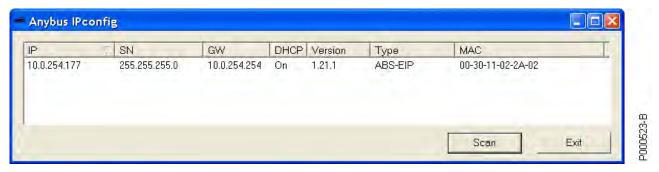


Figure 170: Anybus IP config utility

Query of the inverter data through the ModScan programme

Once configuration is achieved and the IP address of the interface board is available, you can query the inverter variables through the Modbus/TCP protocol. WinTECH's ModScan application (http://www.wintech.com/) allows displaying the variables read with the Modbus.

The figure below shows the setting shield of ModScan for the connection of a board with the IP address 10.0.254.177. For the Modbus/TCP connection, port 502 is provided by the Ethernet interface. Port 502 is to be used for all the Modbus transactions.

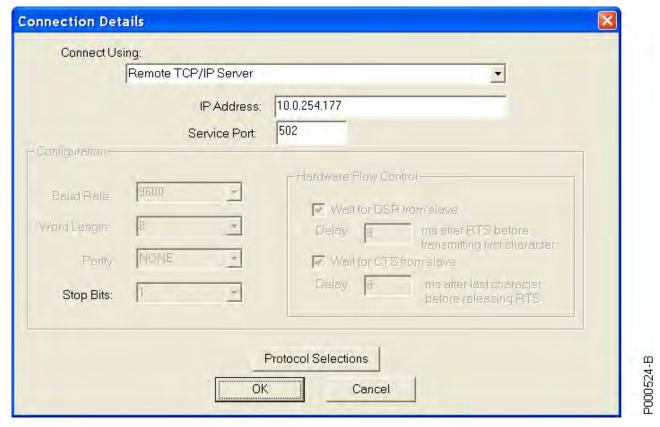


Figure 171: Setting ModScan for a Modbus/TCP connection

Figure 172 shows a ModScan shield related to the 10 output variables of the inverter. These variables are acquired in real time and are provided by the Modbus/TCP protocol. Refer to Sinus Penta's Programming Guide, Fieldbus Configuration menu, for any detail about the map and the meaning of the input/output variables.

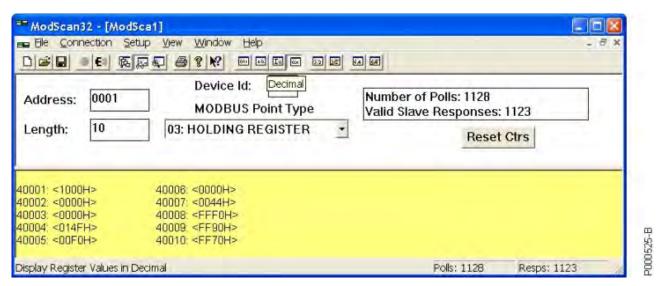


Figure 172: Display of the output variables of the inverter through the Modbus/TCP protocol

NOTE

Unlike the Modbus RTU connection through the serial link, the Modbus/TCP connection is characterised by an offset of 400h (1024) for write variables, because the Ethernet board dialogues with the inverter and splits a buffer shared for two segments of 1kbyte each. One segment is dedicated to the messages sent from the inverter to the Fieldbus, the other is dedicated to the messages sent from the Fieldbus to the inverter. In order to write the interface variable 001: **M042**-Speed Reference from FIELDBUS (whole part) (refer to Sinus Penta's Programming Guide), the Modbus/TCP transaction must be addressed to log 1025, not to log 1.

NOTE

The Ethernet board also offers advanced IT functionality. For example, you can send e-mail messages following particular events occurring in the inverter, or you can create a dynamic web page inside the inverter to display its operating conditions. For advanced functionality, refer to the relevant manual contained in the CD-ROM supplied with the option board kit.

6.11.9. Status LEDs

Each option fieldbus board is equipped with a column provided with four LEDs installed on its front edge to monitor the bus status and with one LED (red/green) installed on the communications board for debugging, as shown in the figure below.

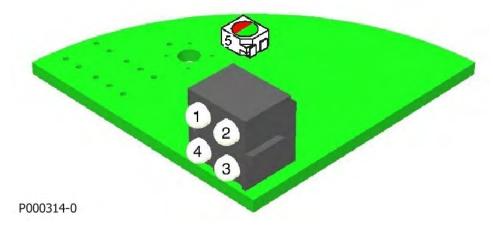


Figure 173: Position of indicator LEDs on the board

The red/green LED mounted on the board relates to all interface models, whereas the LEDs mounted on the board column have different meanings based on the type of fieldbus being used.

6.11.9.1. LEDs for Fieldbus Interface CPU Diagnostics

The LED located on the printed circuit of any version of the interface board indicates the status of the CPU dedicated to communication. The table below shows the possible type of signals.

N. & Name	Function
5. Board	Red – Unknown internal error, or module operating in bootloader mode
diagnostics	1 Hz Red blinker – RAM fault
	2 Hz Red blinker – ASIC or FLASH fault
	4 Hz Red blinker – DPRAM fault
	2 Hz Green blinker – Module not initialized
	1 Hz Green blinker – Module initialized and operating.

6.11.9.2. LEDs for PROFIBUS-DP® Board Diagnostics

In the PROFIBUS-DP board, LED 1 is inactive; the remaining LEDs are described below:

N. & Name	Function				
2.	It indicates that the inverter is on-line on the fieldbus:				
On-Line	Green – The module is on-line; data exchange is allowed.				
	Off – The module is not on-line.				
3.	It indicates that the inverter is off-line on the fieldbus:				
Off-Line	Red – The module is off-line; data exchange is not allowed.				
	Off – The module is not off-line.				
4. Fieldbus	It indicates some possible errors:				
Diagnostics	1 Hz Red blinker – Configuration error: the length of IN messages and OUT messages set				
	while initializing the module does not match with the message length set while initializing the network.				
	2 Hz Red blinker – User Parameter error: the data length and/or contents for the User				
	Parameters set while initializing the module does not match with the data length and/or				
	contents set while initializing the network.				
	4 Hz Flash blinker – Error while initializing the Fieldbus communications ASIC.				
	Off – No error found.				

6.11.9.3. LEDs for DeviceNet® Board Diagnostics

In the DeviceNet® board, LEDs 1 and 4 are not used; the remaining LEDs are described below:

N. & Name	Function					
2. Network	It indicates the status of the DeviceNet communications:					
status	Off – The module is not On-Line					
	Green – DeviceNet communications in progress and correct					
	Flashing green – The module is ready for communication but is not connected to the network					
	Red – A critical error occurred (too erroneous data items) and the module switched to the "link failure" status					
	Flashing red – A timeout occurred when exchanging data					
3.	It indicates the status of the communication module:					
Module	Off – The module is off					
status	Green – The module is operating					
	Flashing green – The length of the two data packets exceeds the preset value					
	Red – An unresettable event error occurred					
	Flashing red – A resettable event error occurred					

6.11.9.4. LEDs for CANopen® Board Diagnostics

In the CANopen board, LED 1 is not used; the remaining LEDs are described below:

N. & Name	Function					
2. Run	It indicates the status of the CANopen interface of the module:					
	Off – The interface is off					
	One flash – The interface status is STOP					
	Flashing – The interface is being initialized					
	On – The interface is operating					
3. Error	It indicates the error status of the CANopen interface:					
	Off – No error					
	One flash – The frame error counter has reached the warning limit					
	Two flashes – A Control Error event (guard event or heartbeat event) occurred					
	Three flashes – A synchronisation error event occurred: the SYNC message was not received					
	within the time-out					
	On – The bus is disabled due to an unresettable event error					
4. Power	Off – The module is off					
	On – The module is on					

The word "Flashing" in the table indicates a LED that comes on for 200ms every 200ms; "One flash", "Two flashes" and "Three flashes" indicate a LED that comes on one, twice or three times for 200ms every 200ms and with an inactivity time of 1000ms.

6.11.9.5. LEDs for Ethernet Board Diagnostics

In the Ethernet board, the diagnostics LEDs indicate the status of the connection to the LAN:

N. & Name	Function				
1. Link	Off – The module has not detected any legal carrier signal and is not in the LINK status				
	On – The module has detected a legal carrier signal and is in the LINK status				
2.	Off – The module is off				
Module	Green – The module is properly operating				
status	Flashing green – The module was not configured and communication is in stand-by				
	Flashing red – the module has detected a resettable event error				
	Red – the module has detected an unresettable event error				
	Flashing red/green – the module is performing a self-test at power on				
3.	Off – The IP address has not yet been assigned				
Network	Green – At least one active Ethernet/IP connection is in progress				
status	Flashing green – No active Ethernet/IP connection is in progress				
	Flashing red – "Timeout" of one or more links performed directly to the module				
	Red – The module has detected that its IP is used by another device in the LAN				
	Flashing red/green – The module is performing a self-test at power on				
4. Activity	Flashing green – A data packet is being transmitted or received				

6.11.10. Environmental Requirements Common to All Boards

Operating temperature —10 to +55°C ambient temperature (contact Elettronica Sa higher ambient temperatures)	
Relative humidity	5 to 95% (non-condensing)
Max. operating altitude	2000 m a.s.l. For installation above 2000 m and up to 4000 m,
	please contact Elettronica Santerno.

6.12. <u>ES919 Communications Board (Slot B)</u>

ES919 communications board makes other communications protocol available in addition to the protocols described in Option Boards For Fieldbus (Slot B). These communications boards allow Metasys N2- and BACnet-based systems.

- Metasys® N2,
- BACnet[®].

P000973-0

CAUTION

When ES919 board is fitted into slot B, no other board (ES847, ES861, ES870, ES950, ES966, ES988) can be fitted into slot C.

CAUTION

ES919 board behaves as a serial gateway and makes all the Mxxx measurements and the lxxx inputs available to the addresses given in the Sinus Penta's Programming Guide.

CAUTION

The "Fieldbus" section in the Sinus Penta's Programming Guide does not apply to ES919 comms board.

6.12.1. Identification Data

Description	Part Number
BACnet/RS485 Sinus Penta Module	ZZ0102402
BACnet/Ethernet Sinus Penta Module	ZZ0102404
Metasys N2 Sinus Penta Module	ZZ0102406

6.12.2. Environmental Requirements Common to All Boards

Operating temperature	-10 to +55°C ambient temperature (contact Elettronica Santerno
	for higher ambient temperatures)
Relative humidity	5 to 95% (non-condensing)
Max. operating altitude	2000 m a.s.l. For installation above 2000 m and up to 4000 m,
	please contact Elettronica Santerno.

6.12.3. Electrical Features Common to All Boards

CAUTION

ES919 is enabled through switch SW1 (factory setting).

If enabled (LED L1 ON), the RS485 serial port located on the inverter (serial link 0 – CN9 in the control board) is automatically disabled.

The operation of ES919 control board is as follows:

	OFF	L3(EN)	OFF
		L1(TX)	OFF
SW1		L2(RX)	OFF
3001	ON (default)	L3(EN)	ON
		L1(TX)	FLASHING (IF COMMUNICATION IS OK)
		L2(RX)	FLASHING (IF COMMUNICATION IS OK)

6.12.4. Installing ES919 Board on the Inverter (Slot B)

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal capacitors to avoid any electric shock hazard.

CAUTION

Electric shock hazard: do not connect/disconnect the signal terminals or the power terminals when the inverter is on. This also prevents the inverter from being damaged.

NOTE

All the screws used to fasten removable parts (terminals cover, serial interface connector, cable plates, etc.) are black, round-head, cross-head screws.

When wiring the inverter, remove only this type of screws. If different screws or bolts are removed, the inverter warranty will be no longer valid.

NOTE

If ES919 board is configured as BACnet Ethernet, one of the three fixing screws is located beneath the Ethernet module.

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- 2. Remove the inverter cover for accessing the control terminals. The fixing spacers and the signal connector are located on the right.

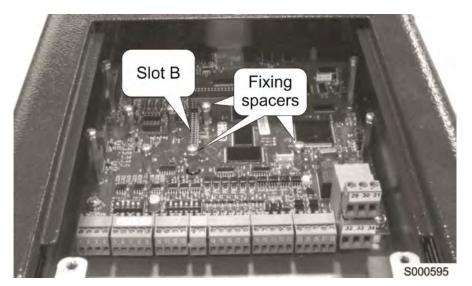


Figure 174: Position of the slot for ES919 board

- 3. Fit ES919 board and make sure that all contacts enter the relevant housing in the signal connector. Fasten the encoder board to the fixing spacers using the screws supplied.
- 4. Enable the communication port with switch SW1.
- 5. Close the inverter frame by reassembling the cover allowing gaining access to the inverter control terminals.

6.12.5. ES919 Board for Metasys[®] N2

ES919 board for Metasys® N2 uses RS485 serial port to communicate with the system via the communication protocol "Metasys N2" by Johnson Controls (http://www.johnsoncontrols.com). Metasys is a registered trademark of Johnson Controls Inc. Please visit www.johnsoncontrols.com.

ES919 board includes the ProtoCessor ASP-485 module.

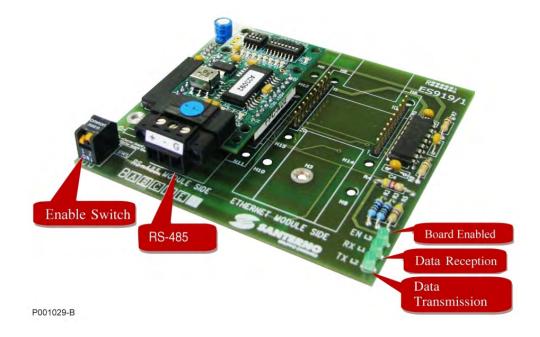


Figure 175: ES919 Board for Metasys® N2

6.12.5.1. Configuration

	Fieldbus Port	INVERTER PORT
Protocol	MetasysN2	MODBUS RTU
Default Baud	9600 8N1	38400 8N2
Default Station ID	11	1

6.12.5.2. RS485 Connector

The communications port includes a positive pole (+), a negative pole (-) and the ground (G).



Figure 176: RS485 connector for Metasys® N2

6.12.5.3. LEDs on the ASP485 ProtoCessor Module

BLUE		ORA	NGE	YEL	LOW	RE	ED
[L8]	[L7]	[L6]	[L5]	[L4]	[L3]	[L2]	[L1]
COI	MMS	Rl	JN	NO DE	FAULT	ERF	ROR

LED	COLOUR	DESCRIPTION
L8	BLUE	ON: Field Port packet received OFF: Field Port response sent
L7	BLUE	ON: Inverter Port Send Poll OFF: Inverter Port Receive Valid Response
L6	ORANGE	ON (flashing 2Hz): ProtoCessor is running normally OFF: ProtoCessor is not running
L5	ORANGE	Not Used
L4	YELLOW	ON: MODBUS Slave address set by DIP-switch OFF: MODBUS Default Address at factory default = 11
L3	YELLOW	ON: Baud Rate set by DIP-switch OFF: Baud Rate at factory default = 9600
L2	RED	ON: Bad Poll, No Map Descriptor found OFF: Once Exception response has been sent [*]
L1	RED	ON: Panic OFF: No Panic has occurred

[*] If you receive a poll for data that does not exist, you turn that LED on briefly. Basically, the system received a valid poll, but could not find a corresponding data point.

6.12.5.4. Baud Rate DIP-switches

B1	
0	Use factory default Baud Rate = 9600 (L3 = OFF)
1	Use Baud from Switches as per table below (L3 = ON)

B2	B3	B4	Baud Rate
0	0	0	1200
1	0	0	2400
0	1	0	4800
1	1	0	9600
0	0	1	19200
1	0	1	38400
0	1	1	57600
1	1	1	115200

6.12.5.5. Address DIP-Switches

A1-A8	
	Corresponds to the Metasys N2 Address
	L4 will indicate that the DIP-switch address is being used

6.12.6. ES919 Board for BACnet/Ethernet

The Module BACnet/Ethernet board uses the Ethernet port to communicate with the system using the BACnet communications protocol.

BACnet - A Data Communication Protocol for Building Automation and Control Networks. Developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), BACnet is an American national standard, a European standard, a national standard in more than 30 Countries, and an ISO global standard (**ISO 16484-5**). The protocol is supported and maintained by ASHRAE Standing Standard Project Committee 135 (SSPC 135). Please see http://www.bacnet.org.

This board is composed of the ProtoCessor FFP-485 communications module.

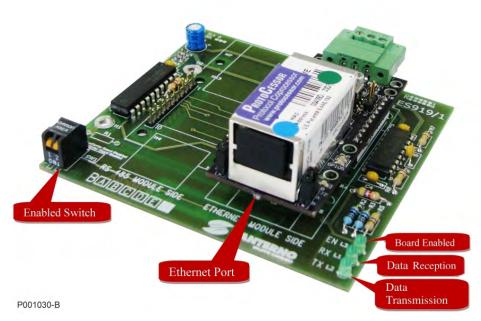
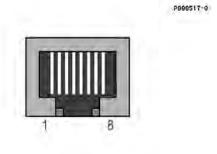



Figure 177: ES919 Board for BACnet/Ethernet

6.12.6.1. Ethernet Connector

The standard RJ45 connector (IEEE 802) located on the module can be used only for an Ethernet 10/100 (100Base-T, 10Base-T) connection. Pins are located as in any computer card. Pins are as follows:

N.	Name	Description	
1	TD+	Positive signal transmission line	
2	TD-	Negative signal transmission line	
3	RD+	Positive signal reception line	
4	Term	Terminated pair - not used	
5	Term	Terminated pair - not used	
6	RD-	Negative signal reception line	
7	Term	Terminated pair - not used	
8	Term	Terminated pair - not used	

6.12.6.2. LEDs on the FFP485 ProtoCessor Module

LED	COLOUR	DESCRIPTION
PWR YELLOW		ON: Module powered
1 771	TELLOVV	OFF: Module not powered
LA	RED	ON (flashing 1Hz): Normal operation
LA	KED	OFF: PANIC
LB	RED	ON (flashing 1Hz): Normal operation
LB	KED	OFF: PANIC
GP105	RED	ON (goes solid after 45-60s): Normal operation
GF 105	KED	OFF: during the first 45-60s
Rx	YELLOW	Flashing when a message is received on the field port
Tx	YELLOW	Flashing when a message is sent on the field port

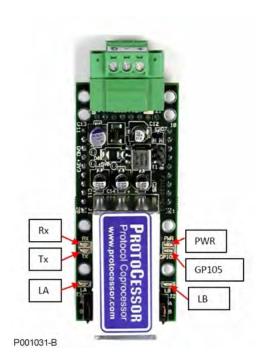


Figure 178: BACnet LEDs

6.12.6.3. Troubleshooting Tips

If **PWR** LED does not come on and LA and LB do not flash, please contact ELETTRONICA SANTERNO's Customer Service.

If PWR LED does not come on but the LA and LB flash, then the PWR LED is faulty.

If **LA** and **LB** do not start flashing, this may indicate a problem with the ProtoCessor. Contact ELETTRONICA SANTERNO's Customer Service.

If GP105 never comes on, please contact ELETTRONICA SANTERNO's Customer Service.

If **TX** and or **RX** do not flash, this may indicate a problem with the field wiring; the configuration in the ProtoCessor on the field side; incorrect polling parameters (such as COMM properties like baud, parity, etc).

6.12.6.4. Board Configuration

The BACnet fieldbus communication kit contains the BACnet configuration software. This software allows the user to set parameters for a specific BACnet installation.

After installation, run the "Sinus Penta BACnet configurator.exe" file, which will load the BACnet configuration software.

Figure 179: BACnet IP Configuration

To configure and download the settings follow the steps below:

- Set up a connection on IP address 192.168.1.X from the host PC (Default IP address of the BACnet fieldbus card is 192.168.1.24). DISABLE ANY OTHER NETWORK CARD, ANY FIREWALL OR ANITIVIRUS programs.
- 2. Connect the host PC to the BACnet device using an Ethernet crossover cable or straight-through cable if connecting from a Hub/Switch.
- 3. Ping the BACnet device using the "Ping BACnet gateway" button within the BACnet configurator software to ensure communication has been achieved. A command window will appear, containing the IP address of any BACnet fieldbus devices that the host PC can detect.
- 4. Select your choice of BACnet IP within the BACnet configuration software.
- 5. Enter a desired IP address, Subnet mask and BACnet port, and select DHCP if required.
- 6. Enter the BACnet device instance and the Network Number.
- Click on "Create Files".
- 8. Click on "Download config file" to configure the BACnet fieldbus network card.
- 9. Click on "Download IP data file" to configure the BACnet fieldbus network card.
- 10. Click on "Restart BACnet Device" after the download has completed.

6.12.7. ES919 Board for BACnet/RS485

The BACnet/RS485 Module card uses RS485 serial port to communicate with the system via the BACnet MSTP communications protocol.

The card is composed of the ProtoCessor FFP-485 module (see 6.12.6.2 LEDs on the FFP485 ProtoCessor Module and 6.12.6.3 Troubleshooting Tips) and of support/interface board ES919.

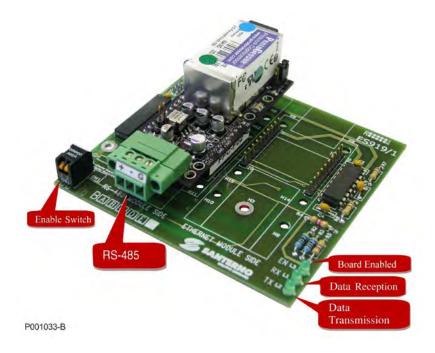


Figure 180: ES919 Board for BACnet/RS485

Although communication is made through RS485 serial port, the board shall be configured through the Ethernet port, as explained in the

Board Configuration section.

6.12.7.1. RS485 Connector

The communications port includes the positive pole, the negative pole and the ground.

Figure 181: RS485 connector for BACnet/RS485

6.12.7.2. Board Configuration

The BACnet fieldbus communication kit contains BACnet configuration software. This software allows the user to set parameters for a specific BACnet installation

After installation, run the "Sinus Penta BACnet configurator.exe" file which will load the BACnet configuration software.

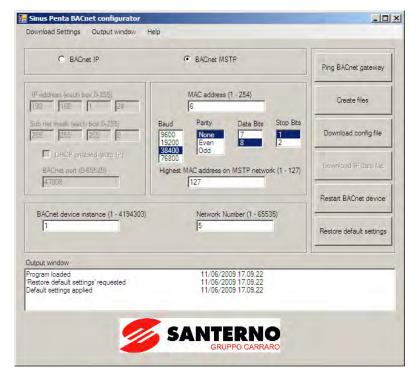


Figure 182: BACnet MSTP Configuration

To configure and download the settings follow the steps below:

- 1. Mount the BACnet device in the way shown in Figure 177.
- 2. In order to configure a BACnet MSTP network, you need to configure each module through Ethernet interface.
- Set up a connection on IP address 192.168.1.X from the host PC (the default IP address of the BACnet fieldbus card is 192.168.1.24). DISABLE ANY OTHER NETWORK CARD, ANY FIREWALL OR ANITIVIRUS program.
- 4. Connect the host PC to the BACnet device using an Ethernet crossover cable or straight through cable if connecting from a Hub/Switch.
- 5. Ping the BACnet device using the "Ping BACnet gateway" button within the BACnet configurator software to ensure communication has been achieved. A command window will appear, containing the IP address of any BACnet fieldbus devices that the host PC can detect.
- 6. Select your choice of BACnet MSTP within the BACnet configuration software.
- 7. Enter the MAC address, baud rate, parity, # stop bits, # data bits and highest MAC address on the network.
- 8. Enter the BACnet device instance and the Network Number.
- 9. Click on "Create Files".
- 10. Click on "Download config file" to configure the BACnet fieldbus network card.
- 11. Click on "Restart BACnet Device" after the download has completed.
- 12. Mount the BACnet device in the way shown in Figure 180.
- 13. Connect the device to the BACnet MSTP network and test if the device can be achieved.

6.13. ES851 Datalogger Board (Slot B)

ES851 DataLogger is an option board allowing acquiring the operating variables of a plant and interfacing to a supervisor computer, even a remote computer, through different connecting modes for data logging and monitoring of the devices connected to the plant.

The main features of the DataLogger are the following:

- 8-Mb Data Flash, allowing setting how many variables and which variables are acquired, as well as their acquisition time, for optimum performance of the available memory;
- RS485 and RS232 interface with Modbus-RTU protocol;
- Ethernet interface with TCP/IP protocol;
- Interface for the connection via GSM modem and analog modem;
- SMS functionality for events monitored by the DataLogger (available only when a GSM modem is used).

Figure 183: ES851 DataLogger Board

Each DataLogger is capable of monitoring up to 15 devices through RS485 or RS232 network with Modbus protocol. ES851 is the master and the connected devices are the slaves.

A remote computer can be connected to the plant via RS485 or RS232 serial links, via modem or via Ethernet. The RemoteDrive software allows performing any operation both on the plant devices and on ES851 (scanning the devices connected to the DataLogger and activating data acquisition except for the devices excluded from logging—see the Programming Instructions of ES851 DataLogger for more details). The connection modes and specifications are detailed in the following sections.

6.13.1. Identification Data

Description	Part Number
ES851 FULL DATALOGGER	ZZ0101820

6.13.2. Installing ES851 Board on the Inverter (Slot B)

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal capacitors to avoid any electric shock hazard.

CAUTION

Electric shock hazard: do not connect/disconnect the signal terminals or the power terminals when the inverter is on. This also prevents the inverter from being damaged.

NOTE

All the screws used to fasten removable parts (terminals cover, serial interface connector, cable plates, etc.) are black, round-head, cross-head screws. When wiring the inverter, remove only this type of screws. If different screws or bolts are removed, the inverter warranty will be no longer valid.

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- 2. Remove the cover allowing gaining access to the inverter control terminals. The fixing spacers and the signal connector are located on the right.

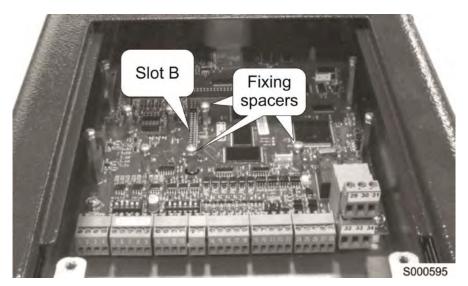


Figure 184: Position of the slot for the installation of ES851 DataLogger board

3. Fit ES851 board and make sure that all contacts enter the relevant housing in the signal connector. Fasten the board to the fixing spacers using the screws supplied.

Figure 185: ES851 DataLogger fitted into slot B

- 4. Connect the communications cables to the relevant ports based on the type of communications to be established. Set DIP-switches accordingly (see sections below).
- 5. Close the inverter frame by reassembling the cover allowing gaining access to the inverter control terminals.

6.13.3. Connectivity

CAUTION

Remove voltage from the inverter before wiring ES851 DataLogger board. Take any safety measure required before touching the connectors and handling the DataLogger board.

ES851 is provided with the following serial communications ports:

Port	Description	Terminal Board	Link
COM1 RS232	Modem/PC connection	ES851 – CN3	DB9 – Male
COM1 RS485	Slave supervisor connection	ES851 - CN11	DB9 – Male
COM2 RS485	Master Supervisor connection	ES851 - CN8	DB9 - Female
	Ethernet connection	ES851 - CN2	RJ45

NOTE

CN3 - RS232 connection replaces CN11 - RS485 connection.

Factory setting is CN3 - RS232.

NOTE

The Master or Slave operating mode of the COM ports can be changed by setting some configuration parameters of ES851 board accordingly (please refer to the Data Logger ES851 - Programming Instructions for further details). The preset configurations are given in the table above.

NOTE

A modem connection can replace the Ethernet connection. The ES851 DataLogger board does NOT support the modem connection and the Ethernet connection.

6.13.3.1. Wiring RS232 Serial Links

RS232 serial link is factory set for COM1 port.

RS232 links are needed for some communication options required by ES851 DataLogger:

- Direct connection to a computer with a null modem cable (MODBUS RTU protocol in slave mode);
- Connection via analog/digital modem to a remote computer;

For null modem connections, the DB9 connector is connected to the computer through a null modem RS232 cable (cross-over cable).

For connections via analog modem, the DB9 connector is connected through an RS232 cable not crossedover.

RS232 Serial communication ratings:

Baud rate:	Configurable between 1200115200 bps (default value: 38400 bps)	
Data format:	8-bit	
Start bit:	1	
Parity: (1)	NO, EVEN, ODD (default: NO)	
Stop bits:	2,1 (default: 2)	
Protocol:	MODBUS RTU	
Supported functions:	03h (Read Holding Registers) 10h (Preset Multiple Registers)	
Device address:	Configurable between 1 and 247 (default value: 1)	
Electric standard:	RS232	
Waiting time between packets:	Configurable between 0 and 50 ms (default value: 20 ms)	
Timeout:	Configurable between 0 and 1000 ms (default value: 500 ms)	

¹⁾ Ignored when receiving communication messages.

6.13.3.2. Wiring RS485 Serial Link

RS485 links are needed for certain communication options required by ES851 DataLogger:

- Direct connection to a computer with a properly wired cable and an RS485/USB or RS485/RS232 converter (MODBUS RTU protocol in slave mode or PPP protocol);
- Direct connection to the multidrop network of the plant devices (MODBUS RTU in master mode).

The MODBUS-IDA (http://www.modbus.org) Association defines the type of connection for MODBUS communications over serial link RS485, which is used by the Sinus Penta, as a "2-wire cable". Specifications are the following:

Type of cable	Shielded cable composed of a balanced pair named D1/D0 + common conductor ("Common").
Recommended cable model	Belden 3106 (distributed from Cavitec)
Maximum length	500 meters based on the max. distance measured between two stations.
Characteristic impedance	Greater than 100Ω (recommended), typically 120Ω .
Standard colours	Yellow/brown for the D1/D0 pair, grey for the "Common" signal.

The typical wiring diagram recommended by the MODBUS-IDA Association for the connection of "2-wire" devices is shown in Figure 186.

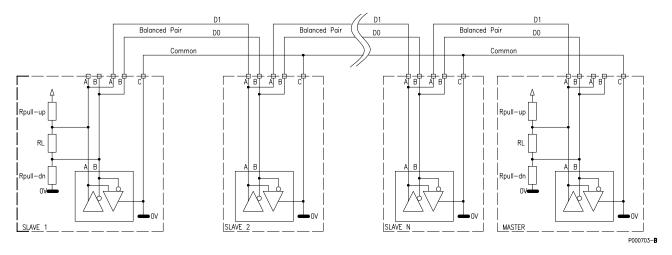


Figure 186: Recommended wiring diagram for the connection of 2-wire MODBUS devices

The network composed of the termination resistor and the polarization resistors is incorporated into the inverter and can be activated via DIP-switches. The figure above shows the termination network for the devices located at both ends of the network, where the terminator must be installed.

For multidrop connections, 1 to 128 devices may be connected. Make sure that the ID of each device is properly configured (please refer to the Data Logger ES851 - Programming Instructions).

NOTE

All the devices connected to the communication multidrop network should be grounded to the same conductor (0V) to minimize any difference of ground potentials between devices that can adversely affect communications.

Provide a linear wiring (not a star wiring) for multidrop line RS485: the first device in the multidrop connection will have only one outgoing line, while the last device will have only one incoming line. The line terminator is to be installed on the first device and the last device.

The line master device (ES851) is typically placed at the beginning or at the end of a multidrop connection; in that case, the line terminator of the farthest inverter from the master computer shall be "ON".

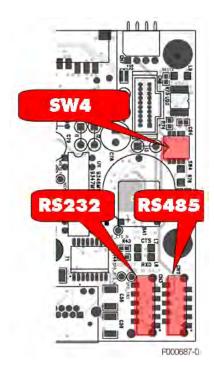
NOTE

Communication does not take place or is adversely affected if multidrop terminators are not properly set up, especially in case of high baud rate. If more than two terminators are fitted, some drivers can enter the protection mode due to thermal overload, thus stopping dialoguing with some of the connected devices.

RS485 Serial communication ratings:

Baud rate:	Configurable between 1200115200 bps (default value: 38400 bps)	
Data format:	8-bit	
Start bit:	1	
Parity: (1)	NO, EVEN, ODD (default: NO)	
Stop bits:	2,1 (default: 2)	
Protocol:	MODBUS RTU	
Supported functions:	03h (Read Holding Registers) 10h (Preset Multiple Registers)	
Device address:	Configurable between 1 and 247 (default value: 1)	
Electric standard:	RS232	
Waiting time between packets:	Configurable between 0 and 50 ms (default value: 20 ms)	
Timeout:	Configurable between 0 and 1000 ms (default value: 500 ms)	

¹⁾ Ignored when receiving communication messages.



6.13.3.3. COM1 Configuration and Wiring

DB9 flying connector (COM1) brings CN3/CN11 connector of ES851/1 board outside the inverter; this should be fastened to a bracket mounted on the right side of the inverter frame.

The type of port (RS232 or RS485) to be used can be selected. The flying cable is to be connected to CN3 or CN11 for RS232 or RS485 respectively (factory setting: CN3). Use SW4-1 to activate the port you chose.

SW4 [default]	Function		
1 [ON]	ON RS232 Interface activated		
	OFF RS485 Interface activated		
2 [OFF]	Not used		
3 [OFF]	Both ON to activate RS485		
4 [OFF]	terminator Both OFF to deactivate RS485 terminator		

RS232 Modbus RTU Mode

The pin layout for flying COM1 connector is as follows:

DB9Connector Pin N.	Name	Description
-	Shield	Frame of the connector connected to the PE
1	CD	Carrier Detect
2	RD	Received Data
3	TD	Transmitted Data
4	DTR	Data Terminal Ready
5	GND	Ground
6	DSR	Data Set Ready
7	RTS	Request To Send
8	CTS	Clear To Send
9	RI	Ring Indicator

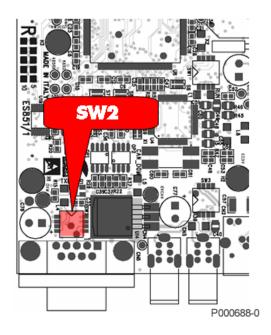
RS485 Modbus RTU Mode

This is NOT the default operating mode for ES851 DataLogger board. CAUTION

For COM1 port, RS485 mode is an ALTERNATIVE to RS232. Either one must CAUTION

be used.

The pin layout for flying COM1 connector is as follows:


DB9 Connector Pin N.	Name	Description
1 – 3	A-Line	(TX/RX A) Differential input/output A (bidirectional) according to RS485 standard. Positive polarity in respect to pins 2 – 4 for one MARK.
2 – 4	B-Line	(TX/RX B) Differential input/output B (bidirectional) according to RS485 standard. Negative polarity in respect to pins 1 – 3 for one MARK.
5	GND	(0V) Control board zero volt.
6	N.C.	Not connected.
7-8	GND	(GND) Control board zero volt.
9	+5V	+5 V, max. 100mA for the power supply of the external optional RS485/RS232 converter.

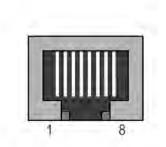
6.13.3.4. COM2 Configuration and Wiring

DB9 female connector (COM2) on ES851 is preset as RS485 Modbus Master. The DIP-switch SW2 allows RS485 driver power supply to be set as "internal" (via ES851) or as external and allows the line termination to be activated/deactivated.

SW2 [default]	Function		
1 [ON]	Both ON to activate the internal		
	power supply of the driver		
2 [ON]	Both OFF to deliver external		
	power supply		
3 [ON]	Both ON to enable line		
	termination		
4 [ON]	Both OFF to disable the line		
	terminator		

DB9 connector pins:

DB9 Connector Pin N.	Name	Description	
-	Shield	Frame of the connector connected to the PE.	
1	N.C.		
2	N.C.		
3	A-Line	RxD/TxD positive according to RS485 specifications.	
4	PB_RTS	Request To Send – high active when sending.	
5	GND	(0V) zero volt of the bus isolated in respect to 0V of the control board.	
6	+5V	Bus driver supplied isolated from the control board circuits.	
7	N.C.		
8	B-Line	RxD/TxD negative according to RS485 specifications.	
9	N.C.		


P000517-0

6.13.3.5. Types of Ethernet Connections

The Sinus Penta, if supplied with ES851 DataLogger, is provided with the standard RJ45 connector (IEEE 802) for 10/100 (100Base-T, 10Base-T) Ethernet connection. Pins are arranged as follows (same layout as in network boards used for personal computers):

N.	Name	Description
1	TD+	Positive signal transmission line
2	TD-	Negative signal transmission line
3	RD+	Positive signal receiving line
4	Term	Terminated pair, not used
5	Term	Terminated pair, not used
6	RD-	Negative signal receiving line
7	Term	Terminated pair, not used
8	Term	Terminated pair, not used

ES851 can be connected, through Ethernet interface, to an Ethernet control device with a master (PC) in one of the following ways:

- Through a LAN (Ethernet business network);
- **Through a router** (e.g. ISDN, ADSL, GPRS) [starting from SW version DL166X of ES851 control board]
- Through a direct point-to-point connection.

CAUTION

The link to a router is available only if you purchased the LINK service for the connection to the Internet.

If you purchased the LINK service for the connection to the Internet, the Internet connection through a LAN is obtained by connecting ES851 to the LAN using a standard Straight-Through Cable TIA/EIA-568-B of class 5 UTP (Patch cable for LAN), as shown in Figure 187. In that case, the plant can be accessed from any remote computer that can be connected to the Internet.

Connection through a LAN

CAUTION

The DHCP, DNS function shall be available for the LAN. Also, the LAN must be connected to the Internet.

NOTE

The Ethernet interface board cannot be connected to old LANs using Thin Ethernet (10base2) coaxial cables. Connection to this type of LANs is possible using a Hub provided with both Thin Ethernet (10base2) connectors and 100Base-T or 10Base-T connectors. The LAN topology is a star one, with each node connected to the Hub or the Switch through its cable.

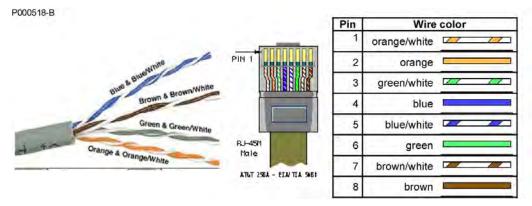
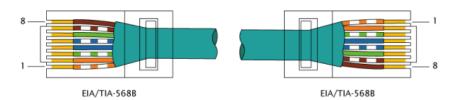


Figure 187: Cable of Cat. 5 for Ethernet and standard colour arrangement in the connector

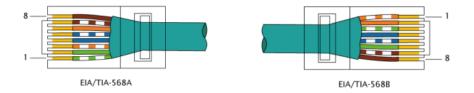
If you did not purchase the option for the connection to the Internet (LINK service), ES851 can be connected to the LAN so that ES851 and the plant can be detected from the LAN <u>ONLY</u>, once the DataLogger parameters have been programmed accordingly. Please refer to the Data Logger ES851 - Programming Instructions for more details.

Connection through a router

If you purchased the LINK service for the connection to the Internet, the Internet connection through a router is obtained by connecting ES851 to the router using the cable supplied.


Point-to-point connection

Special software programming is required for the point-to-point connection. Please refer to the Data Logger ES851 - Programming Instructions for more details.


Direct point-to-point connection is obtained with a Cross-Over Cable TIA/EIA-568-B, cat. 5. This type of cable performs a cross-over of the pairs so that the TD+/TD- pair corresponds to the RD+/RD- pair, and vice versa.

The table below shows the colour matching on the connector pins for the Cross-Over Cable and the cross-over diagram of the two pairs used from 100Base-T or 10Base-T connection.

EIA/TIA 568 standard patch cable, UTP/STP type, cat. 5

EIA/TIA 568 cross-over cable, UTP/STP type, cat. 5

NOTE

The inverter is typically installed with other electric/electronic devices inside a cubicle. Normally, the electromagnetic pollution inside the cubicle is remarkable and is due to both radiofrequency disturbance caused by the inverters and to bursts caused by the electromechanical devices. To avoid propagating disturbance to Ethernet cables, they must be segregated and kept as far as possible from the other power cables and signal cables in the cubicle.

Disturbance propagation to Ethernet cables may affect the correct operation of the inverter and the other devices (computers, PLCs, Switches, Routers) connected to the same LAN.

NOTE

The maximum length of the LAN cable, cat. 5 UTP allowed by IEEE 802 standards results from the max. transit time allowed from the protocol and is equal to 100m. The longer the cable length, the higher the risk of communications failure.

NOTE

For Ethernet wiring, only use cables certified for LAN cables of 5 UTP category or higher. For standard wiring, avoid creating your own cables; Straight-Through or Cross-Over cables should be purchased from an authorised dealer.

6.13.3.6. Ethernet Port Wiring

CAUTION

Remove voltage from the Penta drive before wiring ES851 DataLogger board. Take any safety measure required before touching the connectors and handling the DataLogger board.

Figure 188: Location of the Ethernet port

Remove the cover and access to the control board of the Sinus Penta. Insert the male connector to the female RJ45 connector located on ES851. Press until the tab snaps.

Figure 189: Wiring of the Ethernet cable

6.14. <u>ES851-RTC Real Time Clock (Slot B)</u>

The Real Time Clock ES851 RTC option board is provided with a clock indicating date and time that is functioning even when the inverter is not powered. The inverter firmware may use date and time info to manage different timed events.

Figure 190: Real Time Clock ES851-RTC Board

- 1. DIP-switch SW1
- 2. DIP-switch SW4

NOTE

The same software functionality performed by the Real Time Clock ES851-RTC is performed by the DataLogger ES851 as well.

6.14.1. Identification Data

Description	Part Number	
ES851 RTC	ZZ0101825	

6.14.2. Installing ES851-RTC Board on the Inverter (Slot B)

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal capacitors to avoid any electric shock hazard.

CAUTION

Electric shock hazard: do not connect/disconnect the signal terminals or the power terminals when the inverter is on. This also prevents the inverter from being damaged.

NOTE

All the screws used to fasten removable parts (terminals cover, serial interface connector, cable plates, etc.) are black, round-head, cross-head screws. When wiring the inverter, remove only this type of screws. If different screws or bolts are removed, the inverter warranty will be no longer valid.

Follow the instructions given for the DataLogger ES851 (see ES851 Datalogger Board (Slot B)).

6.14.2.1. DIP-switch Configuration

The configuration below of the DIP-switches located on ES851-RTC board (Figure 190) is to be left unchanged:

SW1: 1-ON, 2-OFF, 3-ON, 4-ON SW4: 1-ON, 2-OFF, 3-OFF, 4-OFF

6.15. ES847 I/O Expansion Board (Slot C)

ES847 Board allows implementing an additional I/O set for any product of the PENTA series. Additional functionality includes:

- XAIN1/2/3/4: Four "fast" sampling analog inputs, 12-bit, ±10V f.s;
- XAIN5/6: Two "fast" sampling analog inputs, 12-bit, for AC current measurement via CTs or for 0-20mA sensor measures; resolution: 11 bits;
- XAIN7: One "fast" sampling analog input for ±160mA f.s. sensor measurements; resolution: 12 bits (Energy Counter option);
- XAIN8/9/10/11: Four "slow" sampling inputs, 12-bit, configurable as 0-10V f.s., 0-20 mA f.s., 0-100 mV f.s., temperature acquisition via two-wire thermistor PT100;
- XAIN12/13: Two "slow" sampling analog inputs, 12-bit, 0-10V f.s.;
- VAP/VBP/VCP: Three voltage inputs for ADE (Energy Counter option);
- IAP/IBP/ICP: Three current inputs for ADE (Energy Counter option);
- XMDI1/2/3/4/5/6/7/8: Eight PNP, 24V multifunction digital inputs; three of them are "fast propagation" inputs and can be used for the acquisition of a PUSH-PULL, 24V encoder;
- XMDO1/2/3/4: Six multifunction digital outputs, OC outputs free from potential to be used both as PNP and NPN inputs, Vomax=48V, Iomax=50mA, providing short-circuit protection through a resettable fuse.

CAUTION

Not all I/Os are controlled from all the products of the Sinus Penta series. Please refer to the DIP-switch/Note column in ES847 Board Terminals and to the Guide to the Regenerative Application).

CAUTION

If ES847 board is mounted in slot C, ES919 cannot be mounted in slot B (see ES919 Communications Board (Slot B)).

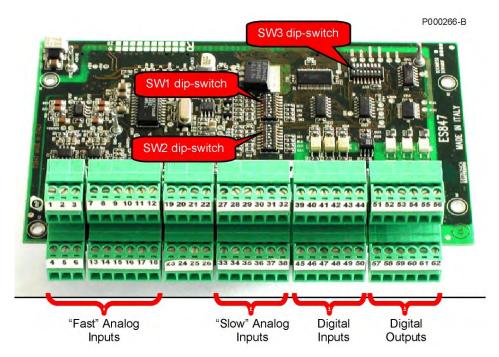


Figure 191: Signal conditioning and additional I/Os board (ES847)

6.15.1. Identification Data

Description	Part Number	
ES847/1 Signal conditioning	ZZ0101814	

6.15.2. Installing ES847 Board on the Inverter (Slot C)

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal capacitors to avoid any electric shock hazard.

CAUTION

Electric shock hazard: do not connect/disconnect the signal terminals or the power terminals when the inverter is on. This also prevents the inverter from being damaged.

NOTE

All the screws used to fasten removable parts (terminals cover, serial interface connector, cable plates, etc.) are black, round-head, cross-head screws. When wiring the inverter, remove only this type of screws. If different screws or

When wiring the inverter, remove only this type of screws. If different screws or bolts are removed, the inverter warranty will be no longer valid.

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- Remove the whole inverter covering by loosening the four hexagonal screws located on the top side and bottom side of the inverter to reach the fixing spacers and the signal connector (Figure 192 – Slot C.)

CAUTION

Before removing the inverter cover, draw out the keypad and disconnect the cable connecting the keypad to the control board to avoid damaging the link between the keypad and the control board.

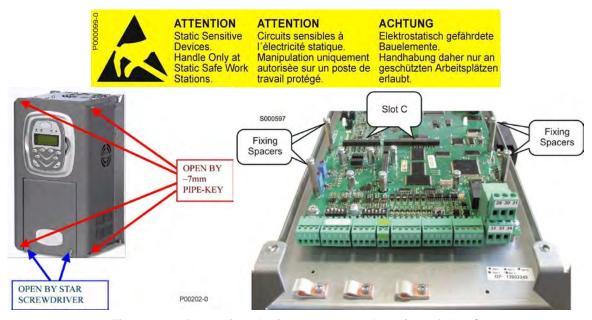


Figure 192: Removing the inverter cover; location of slot C

3. Insert the two contact strips supplied in the bottom part of ES847 board; make sure that each contact enters its slot in the connector. Insert ES847 board over the control board of the PENTA inverter; make sure that each contact enters its slot in the signal connector. Use the screws supplied to fasten board ES847 to the fixing spacers (Figure 193).

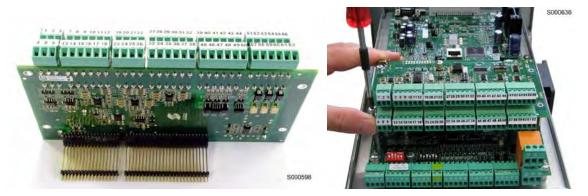


Figure 193: Fitting the strips inside ES847 board and fixing the board on slot C

- 4. Configure the DIP-switches located on board ES847 based on the type of signals to be acquired (see relevant section).
- 5. For the terminal board wiring, follow the instructions given in the section below.
- 6. Close the inverter frame by reassembling the cover allowing gaining access to the inverter control terminals.

6.15.3. ES847 Board Terminals

Screwable terminal board including 12 sections (each section can be individually removed) for 0.08 to 1.5mm^2 (AWG 28-16) cables. **Decisive voltage class A according to EN 61800-5-1.**

N.	Name	Description	I/O Features	DIP- switch/Notes
1-2	XAIN1+ XAIN1-	"Fast" differential auxiliary analog input, ±10V f.s., number 1	Vfs = ± 10 V, Rin= 10 k Ω ; Resolution: 12 bits	n.u.
3	CMA	0V for analog inputs (common to control 0V)	Control board zero Volt	
4-5	+15VM -15VM	Stabilized, bipolar output protected from short-circuits for auxiliary circuits.	+15V, -15V; lout max: 100mA	
6	CMA	0V for analog inputs (common to control 0V)	Control board zero Volt	
7-8	XAIN2+ XAIN2-	"Fast" differential auxiliary analog input, ±10V f.s. number 2	Vfs = ± 10 V, Rin= 10 k Ω ; Resolution: 12 bits	n.u.
9-10	XAIN3+ XAIN3-	"Fast" differential auxiliary analog input, ±10V f.s. number 3	Vfs = ± 10 V, Rin= 10 k Ω ; Resolution: 12 bits	n.u.
11-12	XAIN4+ XAIN4-	"Fast" differential auxiliary analog input, ±10V f.s. number 4	Vfs = ± 10 V, Rin= 10 k Ω ; Resolution: 12 bits	PD
13	XAIN5	"Fast" auxiliary analog input (current input), number 5	Ifs = ± 20 mA, Rin= 200Ω ; Resolution: 12 bits	PD
14	CMA	0V for analog inputs for XAIN5 return	Control board zero Volt	
15	XAIN6	"Fast" auxiliary analog input (current input), number 6	Ifs = ± 20 mA, Rin= 200Ω ; Resolution: 12 bits	n.u.
16	CMA	0V for analog inputs for XAIN6 return	Control board zero Volt	
17	XAIN7	"Fast" auxiliary current analog input, number 7 (Energy Counter option)	Ifs = ± 160 mA, Rin= 33Ω ; Resolution: 12 bits	PR
18	CMA	0V for analog inputs (common with control 0V)	Control board zero Volt	
19	VAP	Voltage analog input from ES917 – phase R (Energy Counter Option)	Vfs = ± 10 V, Rin= 50 k Ω ; Resolution: 12 bits	PR
20	VBP	Voltage analog input from ES917 – phase S (Energy Counter Option)	Vfs = ± 10 V, Rin= 50 k Ω ; Resolution: 12 bits	PR
21	VCP	Voltage analog input from ES917 – phase T (Energy Counter Option)	Vfs = ± 10 V, Rin= 50 k Ω ; Resolution: 12 bits	PR
22	CMA	0V for analog inputs (common with control 0V)	Control board zero Volt	
23	IAP	Current analog input from CT – phase R (Energy Counter Option)	Ifs = ± 150 mA, Rin= 33Ω ; Resolution: 12 bits	PR
24	IBP	Current analog input from CT – phase S (Energy Counter Option)	Ifs = ± 150 mA, Rin= 33Ω ; Resolution: 12 bits	PR
25	ICP	Current analog input from CT – phase T (Energy Counter Option)	Ifs = ± 150 mA, Rin= 33Ω ; Resolution: 12 bits	PR
26	CMA	0V for analog inputs (common with control 0V)	Control board zero Volt	

PD: Used from the Sinus Penta standard firmware only.

PR: Used from the Regenerative application when the Energy Counter option is installed.

			Vfs = 10V, Rin = $30k\Omega$	SW1.3 = ON SW1.1-2-4 = OFF
27	XAIN8/T1+	"Slow" configurable auxiliary analog input, number 8	Vfs = 100mV, Rin = $1M\Omega$	SW1.4 = ON
		Cion coningarable daminary analog input, nambor c	•	SW1.1-2-3 = OFF SW1.2 = ON
			Ifs = 20 mA, Rin = 124.5Ω	SW1.1-3-4 = OFF
		Thermistor temperature measurement, number 1	Temperature measurement with PT100 Compliant with IEC 60751 or DIN 43735	SW1.1-4 = ON SW1.2-3 = OFF (default)
28	CMA/T1-	0V for analog inputs for XAIN8 return	Control board zero Volt	
		<u> </u>	Vfs = 10V, Rin = $30k\Omega$	SW1.7 = ON SW1.5-6-8 = OFF
	XAIN9/T2+	"Slow" configurable auxiliary analog input, number 9	Vfs = 100mV, Rin = $1M\Omega$	SW1.8 = ON SW1.5-6-7 = OFF
29			Ifs = 20mA, Rin = 124.5Ω	SW1.6 = ON SW1.5-7-8 = OFF
		Thermistor temperature measurement, number 2	Temperature measurement with PT100 Compliant with IEC 60751 or DIN 43735	SW1.5-8 = ON SW1.6-7 = OFF (default)
30	CMA/T2-	0V for analog inputs for XAIN9 return	Control board zero Volt	
			Vfs = 10V, Rin = 30 k Ω	SW2.3 = ON SW2.1-2-4 = OFF
	XAIN10/T3+	"Slow" configurable auxiliary analog input, number 10	Vfs = 100mV, Rin = $1M\Omega$	SW2.4 = ON SW2.1-2-3 = OFF
31			Ifs = 20mA, Rin = 124.5Ω	SW2.2 = ON SW2.1-3-4 = OFF
		Thermistor temperature measurement, number 3	Temperature measurement with PT100 Compliant with IEC 60751 or DIN 43735	SW2.1-4 = ON SW2.2-3 = OFF (default)
32	CMA/T3-	0V for analog inputs for XAIN10 return	Control board zero Volt	
			Vfs = 10V, Rin = $30k\Omega$	SW2.7 = ON SW2.5-6-8 = OFF
	XAIN11/T4+	"Slow" configurable auxiliary analog input, number 11	Vfs = 100mV, Rin = $1M\Omega$	SW2.8 = ON SW2.5-6-7 = OFF
33			Ifs = 20mA, Rin = 124.5Ω	SW2.6 = ON SW2.5-7-8 = OFF
		Thermistor temperature measurement, number 4	Temperature measurement with PT100 Compliant with IEC 60751 or DIN 43735	SW2.5-8 = ON SW2.6-7 = OFF (default)
34	CMA/T4-	0V for analog inputs for XAIN11 return	Control board zero Volt	
35	XAIN12	"Slow" voltage auxiliary analog input, number 12	Vfs = 10V, Rin = $30k\Omega$	n.u.
36	СМА	0V for analog inputs for XAIN12 return	Control board zero Volt	n.u.
37	XAIN13	"Slow" voltage auxiliary analog input, number 13	Vfs = 10V, Rin = $30k\Omega$	n.u.
38	CMA	0V for analog inputs for XAIN13 return	Control board zero Volt	n.u.

39	XMDI1	Multifunction auxiliary digital input 1					
40	XMDI2	Multifunction auxiliary digital input 2					
41	XMDI3	Multifunction auxiliary digital input 3					
42	XMDI4	Multifunction auxiliary digital input 4	24Vdc Opto-isolated digital	Maximum			
43	CMD	0 V digital input isolated to control 0 V	inputs; positive logic (PNP):	response time to			
44	+24V	Auxiliary supply output for opto-isolated multifunction digital inputs	active with high level signal in respect to CMD	processor: 500µs			
45	XMDI5	Auxiliary multifunction digital input 5	(terminals 43 and 50).	500μS			
	XMDI6 /	Auxiliary multifunction digital input 6 / Single-ended,	In compliance with EN				
46	ECHA/	push-pull 24V encoder input, phase A / Frequency input	61131-2 as type 1 digital				
	FINA	A	inputs (24Vdc rated				
47	XMDI7 /	Auxiliary multifunction digital input 7 / Single-ended,	voltage).	Maximum			
	ECHB	push-pull 24V encoder input, phase B		response time to			
48	XMDI8 / FINB	Auxiliary multifunction digital input 8 / Frequency input B		processor: 600ns			
	FINB		+24V±15% ; Imax: 200mA	000115			
49	+24V	Auxiliary supply output for opto-isolated multifunction	Protected by resettable				
73	7277	digital inputs	fuse				
50	CMD	0 V digital input isolated to control 0 V	Opto-isolated digital input zero volt				
51	XMDO1	Multifunction auxiliary digital output 1 (collector)	Zero voit				
52	CMDO1	Multifunction auxiliary digital output 1 (emitter)					
53	XMDO2	Multifunction auxiliary digital output 2 (collector)					
54	CMDO2	Multifunction auxiliary digital output 2 (emitter)					
55	XMDO3	Multifunction auxiliary digital output 3 (collector)					
56	CMDO3	Multifunction auxiliary digital output 3 (emitter)	Open collector isolated				
57	XMDO4	Multifunction auxiliary digital output 4 (collector)	digital outputs, Vomax =				
58	CMDO4	Multifunction auxiliary digital output 4 (emitter)	48V; Iomax = 50mA				
59	XMDO5	Multifunction auxiliary digital output 5 (collector)					
60	CMDO5	Multifunction auxiliary digital output 5 (emitter)					
61	XMDO6	Multifunction auxiliary digital output 6 (collector)					
62	CMDO6	Multifunction auxiliary digital output 6 (emitter)					

All digital outputs are inactive under the following conditions:

NOTE

inverter off;

- inverter initialization stage after power on;
 - firmware updating.

Consider this when choosing the inverter application.

6.15.4. Configuration DIP-switches

ES847 board is provided with three configuration DIP-switches (Figure 191) setting the operating mode as in the table below.

SW1	Sets the operating mode for "slow" analog inputs XAIN8 and XAIN9
SW2	Sets the operating mode for "slow" analog inputs XAIN10 and XAIN11
	Factory-setting: SW3.2=SW3.5=SW3.7=ON; the other DIP-switches are OFF <u>— Do not change</u> <u>factory-setting—</u>

6.15.5. Possible Settings for DIP-switches SW1 and SW2

Configuring Slow Analog Channel XAIN8							
Mode: 0-10V f.s. (Default configuration)	Mode: 0-100mV f.s.	Mode: 0-20mA f.s.	Temperature Reading with Thermistor PT100 (default)				
SW1	SW1	SW1	SW1				
1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4				

Setting Slow Analog Channel XAIN9							
Mode: 0-10V f.s. (Default configuration)	Mode: 0-100mV f.s.	Mode: 0-20mA f.s.	Temperature Reading with Thermistor PT100 (default)				
ı SW1	ı SW1	ı SW1	ı SW1				
ON 5 6 7 8	ON 5 6 7 8	ON 5 6 7 8	ON ON 5 6 7 8				

Setting Slow Analog Channel XAIN10						
Mode: 0-10V f.s. (Default configuration)	Mode: 0-100mV f.s.	Mode: 0-20mA f.s.	Temperature Reading with Thermistor PT100 (default)			
SW2 i	SW2	SW2	SW2			
ON 1 2 3 4	ON 1 2 3 4	ON 1 2 3 4	ON 1 2 3 4			

Setting Slow Analog Channel XAIN11						
Mode: 0-10V f.s. (Default configuration)	Mode: 0-100mV f.s.	Mode: 0-20mA f.s.	Temperature Reading with Thermistor PT100 (default)			
ı SW2	1 SW2	ı SW2	ı SW2			
ON ON 5 6 7 8	ON ON 5 6 7 8	ON 5 6 7 8	ON 5 6 7 8			

Five acquisition modes are available (see Sinus Penta's Programming Guide) corresponding to four hardware settings (see table below).

Type of Preset Acquisition	Mode Set for SW1 and SW2	Full-scale Values and Notes
Voltage: 0÷10V	Mode: 0-10V f.s.	0÷10V
Voltage: 0÷100mV	Mode: 0-100mV f.s.	0÷100mV
Current: 0÷20 mA	Mode: 0-20mA f.s.	0mA ÷ 20mA
Current: 4÷20 mA	Mode: 0-20mA f.s.	4mA ÷ 20mA. Alarm for measurement < 2mA (cable disconnection) or for measurement > 25mA.
Temperature	Temperature Reading with Thermistor PT100 (default)	−50°C ÷ 125°C. Disconnection alarm or short-circuit sensor if resistance measurement is lower/higher than the preset range.

NOTE

Parameter settings must be consistent with DIP-switch settings. Otherwise, unpredictable results for real acquisition are produced.

NOTE

A voltage/current value exceeding the input range will be saturated at minimum or maximum value.

CAUTION

Inputs configured as voltage inputs have high input impedance and must be closed when active. The disconnection of the conductor relating to an analog input configured as a voltage input does not ensure that the channel reading is "zero". Proper "zero" reading occurs only if the input is connected to a low-impedance signal source or is short-circuited. Do not series-connect relay contacts to inputs to obtain "zero" reading.

6.15.6. Wiring Diagrams

6.15.6.1. Connection of "Fast" Differential Analog Inputs

A differential input allows weakening disturbance due to "ground potentials" generated when the signal is acquired from remote sources. Disturbance is weaker only if wiring is correct.

Each input is provided with a positive terminal and a negative terminal of the differential amplifier. They are to be connected to the signal source and to its ground respectively. Common voltage for the signal source ground and the ground of the CMA auxiliary inputs must not exceed the maximum allowable value.

To reduce noise for a differential input, do the following:

- ensure a common path for the differential torque
- connect the source common to CMA input in order not to exceed the common mode input voltage
- use a shielded cable and connect its braiding to the terminal located next to the inverter terminal boards.

ES847 Board is also provided with an auxiliary supply output protected by a fuse which can be used to power external sensors. Do not exceed the max. current ratings. Wiring is shown in the figure below:

Figure 194: Connection of a bipolar voltage source to a differential input

NOTE

Connecting terminal CMA to the signal source ground ensures better acquisition standards. Wiring can be external to the shielded cable or it can consist of the optional common connection of the auxiliary supply.

NOTE

Auxiliary supply outputs are electronically protected against temporary short-circuits. After wiring the inverter, check output voltage, because a permanent short-circuit can damage the inverter.

6.15.6.2. Connection of "Fast" Current Inputs

Three "fast" low-impedance analog inputs are available, which are capable of acquiring sensors with current output.

The correct wiring is shown in the diagram below.

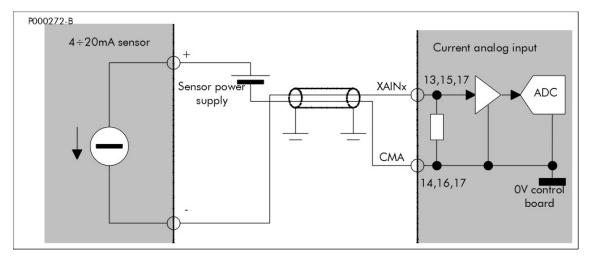


Figure 195: Connection of 0÷20mA (4÷20mA) sensors to "fast" current inputs

NOTE

Do not use +24V power supply, available on terminals 44 and 49 in ES847 board, to power 4÷20mA sensors, because it is to be used for the common of the digital inputs (CMD – terminals 43 and 50), not for the common of the analog inputs (CMA). Terminals 44 and 49 are galvanically isolated and must be kept galvanically isolated.

6.15.6.3. Connecting "Slow" Analog Inputs to Voltage Sources

Use a shielded pair data cable and connect its braiding to the side of ES847 board. Connect the cable braiding to the inverter frame using the special conductor terminals located next to the terminal boards. Although "slow" acquisition analog channels have a cut-off frequency slightly exceeding 10Hz and the mains frequency, which is the main disturbance source, is weakened, make sure that wiring is correct, particularly if the full-scale value is 100mV and if wires are longer than 10 m. The figure below shows a wiring example for the acquisition of a voltage source.

Properly set the DIP-switches for the configuration of the analog channel being used: set the full-scale value to 10V or to 100mV. The setting of the programming parameter must be consistent with the hardware setting.

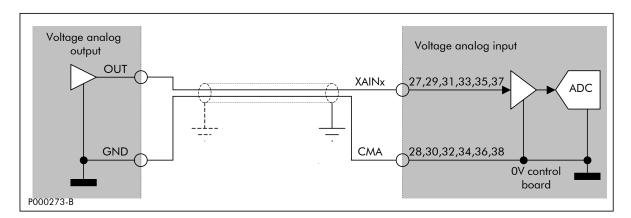


Figure 196: Connecting a voltage source to a "slow" analog input

6.15.6.4. Connecting "Slow" Analog Inputs to Current Sources

Figure 195 shows how to connect "slow" analog inputs to current sources. Channels XAIN8, XAIN9, XAIN10, XAIN11—corresponding to terminals 27, 29, 31, 33—are capable of acquiring current signals with a full-scale value of 20mA. Properly set the DIP-switches for the configuration of the analog channel being used: set the full-scale value to 20mA and set the relevant programming parameter to 0÷20mA or 4÷20mA.

6.15.6.5. Connecting "Slow" Analog Inputs to Thermistor PT100

ES847 board allows reading temperatures directly from the connection of standard thermistors PT100 complying with DIN EN 60751. Two-wire connection is used for easier wiring. Use relatively short cables and make sure that cables are not exposed to sudden temperature variations when the inverter is running. Proper wiring is shown in Figure 197: use a shielded cable and connect its braiding to the inverter metal frame through the special conductor terminals.

If a cable longer than approx. 10 metres is used, measurement calibration is required. For example, if a 1mm² (AWG 17) shielded pair data cable is used, this results in a reading error of approx. +1°C every 10 metres.

To perform measurement calibration, instead of the sensor connect a PT100 sensor emulator set to 0° C (or a 100Ω 0.1% resistor) to the line terminals, then zeroing the measurement offset. More details are given in the Sinus Penta's Programming Guide.

PT100 emulator allows checking the measurement before connecting the sensor.

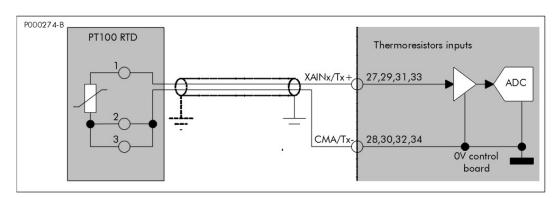


Figure 197: Connecting thermoresistors PT100 to analog channels XAIN8-11 / T1-4

NOTE

Parameter settings must be consistent with DIP-switch settings. Otherwise, unpredictable results for real acquisition are produced.

NOTE

A voltage/current value exceeding the input range will be saturated at minimum or maximum value.

CAUTION

Inputs configured as voltage inputs have high input impedance and must be closed when active. The disconnection of the conductor relating to an analog input configured as a voltage input does not ensure that the channel reading is zero. Proper "zero" reading occurs only if the input is connected to a low-impedance signal source or is short-circuited. Do not series-connect relay contacts and inputs to obtain "zero" reading.

6.15.6.6. Connecting Isolated Digital Inputs

All digital inputs are galvanically isolated from zero volt of the inverter control board. To activate isolated digital inputs, use either isolated supply delivered to terminals 44 and 49 or 24Vdc auxiliary supply. Figure 198 shows the digital input control mode exploiting power inside the inverter and exploiting the output of a control device, such as a PLC. Internal supply (+24 Vdc, terminals 44 and 49) is protected by a 200mA resettable fuse.

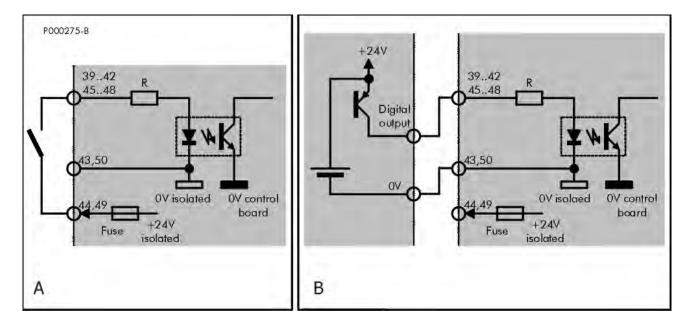


Figure 198: PNP input wiring

A: PNP Command (active to +24V) sent via a voltage free contact

B: PNP Command (active to +24V) sent from a different device (PLC, digital output board, etc.)

6.15.6.7. Connection to an Encoder or a Frequency Input

Auxiliary digital inputs XMDI6, XMDI7, XMDI8 may acquire fast digital signals and may be used for the connection to a push-pull single-ended incremental encoder or for the acquisition of a frequency input. Important: When ES847 board is fitted, encoder B functions are no more implemented by the basic terminal board of the control board, but are implemented by ES847 board.

NOTE

When installing ES847 board, encoder B functions are to be shifted from the basic terminal board of the control board to the terminal board of ES847 board.

+24V isolated

The incremental encoder must be connected to "fast" digital inputs XMDI6 and XMDI7, as shown in Figure 199.

Encoder power supply 24V outputs 24V 49 Fuse

Figure 199: Connecting the incremental encoder to fast inputs XMDI7 and XMDI8

The encoder shall have PUSH-PULL outputs; its 24V power supply is delivered directly by the isolated supply internal to the inverter—terminals +24V (49) and CMD (50). The maximum allowable supply current is 200mA and is protected by a resettable fuse.

Only encoders described above can be acquired directly by the terminal board of the Sinus Penta; encoder signals shall have a maximum frequency of 155kHz, corresponding to 1024 pulse/rev at 9000 rpm.

Input XMDI8 can also acquire a square-wave frequency signal ranging from 10kHZ to 100kHz, which is converted into an analog value to be used as a reference. Frequency values corresponding to the min. and max. reference can be set up as parameters. Do not exceed the allowable duty-cycle ratings for the frequency inputs.

Signals are sent from a 24V Push-pull output with a reference common to terminal CMD (50), as shown in Figure 200).

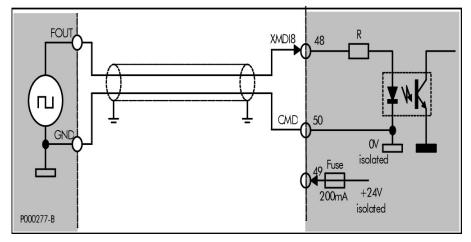


Figure 200: Signal sent from a 24V, Push-pull frequency output

6.15.6.8. Connection to Isolated Digital Outputs

Multifunction outputs XMDO1..8 (terminals 51..62) are all provided with a common terminal (CMDO1..8) which is isolated from the other outputs. They can be used to control both PNP and NPN loads, based on the wiring diagrams shown in Figure 201 and Figure 202.

Electrical conductivity (similar to a closed contact) is to be found between terminal MDO2 and CMDO2 when the output is active, i.e. when the ■ symbol is displayed next to the output. Loads connected as PNP or as NPN are activated.

Outputs can be powered by the inverter isolated power supply or by an external source (24 or 48V – see dashed lines in the figure below).

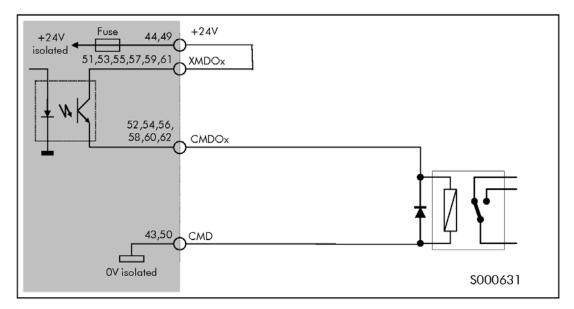


Figure 201: XMDOx output connection as PNP for relay command with internal power supply

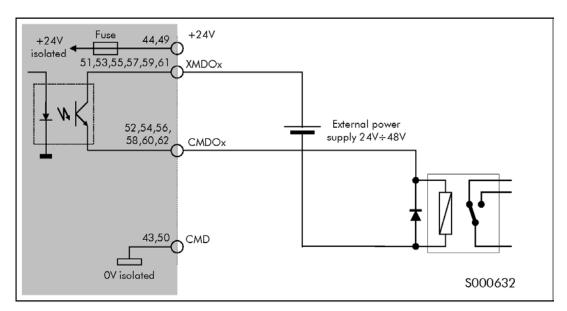


Figure 202: XMDOx output connection as PNP for relay command with external power supply

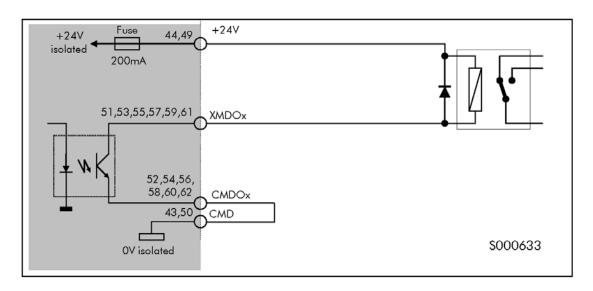


Figure 203: XMDOx output connection as NPN for relay command with internal power supply

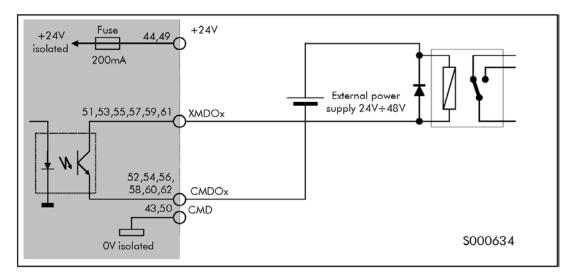


Figure 204: XMDOx output connection as NPN for relay command with external power supply

CAUTION

When inductive loads (e.g. relay coils) are connected, always use the freewheel diode, which is to be connected as shown in the figure.

NOTE

Do not simultaneously connect the isolated internal supply and the auxiliary supply to power the isolated digital outputs. Dashed lines in the figures are alternative to standard wiring.

NOTE

Digital outputs XMDO1..8 are protected from a temporary short-circuit by a resettable fuse. After wiring the inverter, check the output voltage, as a permanent short-circuit can cause irreversible damage.

6.15.7. Environmental Requirements

Operating temperature	-10 to +55°C ambient temperature (contact Elettronica Santerno for
Relative humidity	higher ambient temperatures) 5 to 95% (non-condensing)
Max. operating altitude	2000 m a.s.l. For installation above 2000 m and up to 4000 m,
	please contact Elettronica Santerno.

6.15.8. Electrical Ratings

6.15.8.1. Analog Inputs

Fast Sampling Analog Inputs, ±10V f.s.		Value			
T ast Sampling Analog Inputs, ±10 v 1.s.	Min.	Туре	Мах.	Unit	
Input impedance		10		kΩ	
Offset cumulative error and gain in respect to full-scale value		0.5		%	
Temperature coefficient of the gain error and offset			200	ppm/°C	
Digital resolution			12	bit	
Value of voltage LSB		5.22		mV/LS	
				В	
Common mode maximum voltage over differential inputs	-15		+15	V	
Permanent overload over inputs with no damage	-30		+30	V	
Input filter cut-off frequency (2nd order Butterworth filter)		5.1		kHz	
Sampling time (depending on the software being used)	0.2		1.2	ms	

Fast Sampling Analog Inputs for Current Measurement	Value			
r ast sampling Analog inputs for Guirent Weastirement	Min.	Туре	Мах.	Unit
Input impedance		200		Ω
Offset cumulative error and gain in respect to full-scale value		0.5		%
Temperature coefficient of the gain error and offset			200	ppm/°C
Digital resolution			12	bit
Value of current LSB		13		μA/LSB
Equivalent resolution in 0-20mA acquisition mode			10.5	bit
Permanent overload over inputs with no damage	– 5		+5	V
Input filter cut-off frequency (2nd order Butterworth filter)		5.1		kHz
Sampling time (depending on the software being used)	0.2		1.2	ms

Slow Sampling Analog Inputs Configured in 0-10V mode		Value			
Clow Camping Analog Inpala Comigarca in a 164 maa		Туре	Мах.	Unit	
Input impedance		40		kΩ	
Offset cumulative error and gain in respect to full-scale value		0.5		%	
Temperature coefficient of the gain error and offset			200	ppm/°C	
Digital resolution			12	bit	
Value of voltage LSB		2.44		mV/LS	
				В	
Permanent overload over inputs with no damage	-30		+30	V	
Input filter cut-off frequency (1st order low pass filter)		13		Hz	
Sampling time (depending on the software being used)	10		1000	ms	

Slow Sampling Analog Inputs Configured in 0-20mA mode	Value			
Glow Gampling Analog Inputs Gorlingared in 6 2011A mode	Min.	Туре	Мах.	Unit
Input impedance		124.5		Ω
Offset cumulative error and gain in respect to full-scale value		0.5		%
Temperature coefficient of the gain error and offset			200	ppm/°C
Digital resolution			12	bit
Value of current LSB		4.90		μA/LSB
Permanent overload over inputs with no damage	-3.7		+3,7	V
Input filter cut-off frequency (1st order low pass filter)		13		Hz
Sampling time (depending on the software being used)	10		1000	ms

Slow Sampling Analog Inputs Configured in 0-100mV mode	Value			
Slow Sampling Analog Inputs Coringared in 0-100mV mode		Туре	Max.	Unit
Input impedance 1				MΩ
Offset cumulative error and gain in respect to full-scale value	0.2 %			%
Temperature coefficient of the gain error and offset			50	ppm/°C
Digital resolution			12	bit
Value of voltage LSB 24.7		μV/LSB		
Permanent overload over inputs with no damage			+30	V
Input filter cut-off frequency (1st order low pass filter) 13			Hz	
Sampling time (depending on the software being used)	10 1000 ms		ms	

Slow Sampling Analog Inputs Configured in PT100 Temperature		Value			
Measurement Mode	Min	Туре	Max	Unit .	
Type of probe	Two-wire PT100 Thermistor			rmistor	
Measurement range	_50 260 °C			°C	
Polarization current for PT100	0.49 mA			mA	
Measurement temperature coefficient	50 ppm			ppm/°C	
Digital resolution	11 bit			bit	
Measurement max. cumulative error for temperature ranging from –40 to +55°C	0.5 1.5 °C			°C	
Mean value of temperature LSB (linearization SW function)	0.135 °C/LS			°C/LSB	
Permanent overload over inputs with no damage	-10		+10	V	
Input filter cut-off frequency (1st order low pass filter)		13		Hz	
Sampling time (depending on the software being used)	10 1000 ms			ms	

6.15.8.2. Digital Inputs

Features of the Digital Inputs		Value			
		Туре	Мах.	Unit	
Input voltage for XMDIx in respect to CMD	-30		30	V	
Voltage corresponding to logic level 1 between XMDIx and CMD 15 24 30					
Voltage corresponding to logic level 0 between XMDIx and CMD -30 0 5					
Current absorbed by XMDIx at logic level 1	5	9	12	mA	
Input frequency over "fast" inputs XMDI68	155 kHz			kHz	
Allowable duty-cycle for frequency inputs	30 50 70 %			%	
Min. time at high level for "fast" inputs XMDI68	4.5			μS	
Isolation test voltage between terminals CMD (43 and 50) in respect to terminals CMA (3-6-14-16-18-28-30-32-34-36-38)	500Vac, 50Hz, 1min.				

6.15.8.3. Digital Outputs

Features of the Digital Outputs		Value			
		Туре	Мах.	Unit	
Working voltage range for outputs XMDO16 20 24 50				V	
Max. current that can be switched from outputs XMDO16	50 mA			mA	
Voltage drop of outputs XMDO16, when active	2 V			V	
Leakage current of outputs XMDO16, when active				μΑ	
Isolation test voltage between terminals CMDO16 and CMA	500Vac, 50Hz, 1min.			nin.	

6.15.8.4. Supply Outputs

Features of the Analog Supply Outputs	Value			
	Min.	Туре	Мах.	Unit
Voltage available on terminal +15V (4) in respect to CMA (6)	14.25	15	15.75	V
Voltage available on terminal –15V (5) in respect to CMA (6)	-15.75	-15	-14.25	V
Max. current that can be delivered from +15V output and that can be absorbed by output -15V			100	mA

Features of the Digital Supply Outputs Value				
	Min.	Туре	Мах.	Unit
Voltage available on +24V terminals (44, 49) in respect to CMD (43, 50)	21	24	27	V
Max. current that can be delivered from +24V output			200	mΑ

CAUTION

Irreversible faults occur if the min./max. input/output voltage ratings are exceeded.

NOTE

The isolated supply output and the analog auxiliary output are protected by a resettable fuse capable of protecting the power supply unit inside the inverter against short-circuits. Nevertheless, in case of short-circuit, it can happen that the inverter does not temporarily lock and does not stop the motor.

6.16. ES870 Relay I/O Expansion Board (Slot C)

ES870 board is an expansion board for the digital I/Os of all the products of the Sinus Penta series. The ES870 board includes:

- XMDI1/2/3/4/5/6/7/8: Eight 24V multifunction digital inputs, type PNP. Three inputs are "fast propagation" inputs that can be used also for PUSH-PULL 24V encoder acquisition;
- XMDO1/2/3/4/5/6: Six multifunction relay digital outputs (Vomax = 250 VAC, Iomax = 5A, Vomax = 30 VDC, Iomax = 5A).

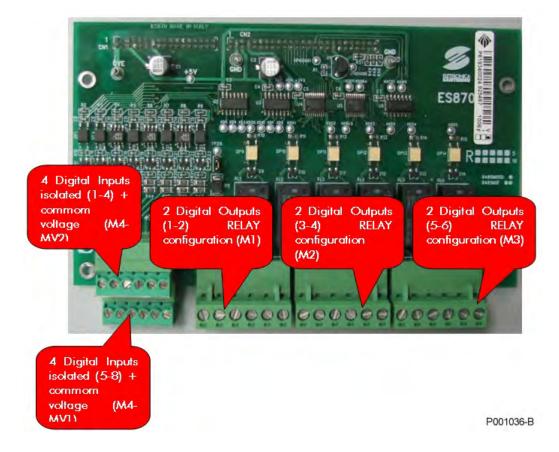


Figure 205: Relay I/O expansion board ES870

CAUTION

If ES870 board is fitted into slot C, ES919 cannot be mounted in slot B (see ES919 Communications Board (Slot B)).

6.16.1. Identification Data

Description	Part Number
Relay I/O Board	ZZ0101840

6.16.2. Installing ES870 Board on the Inverter (Slot C)

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for a complete discharge of the internal capacitors to avoid any electric shock hazard.

CAUTION

Electric shock hazard: do not connect/disconnect the signal terminals or the power terminals when the inverter is on. This also prevents the inverter from being damaged.

NOTE

All the screws used to fasten removable parts (terminals cover, serial interface connector, cable plates, etc.) are black, round-head, cross-head screws. When wiring the inverter, remove only this type of screws. If different screws or bolts are removed, the inverter warranty will be no longer valid.

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- Remove the whole inverter covering by loosening the four hexagonal screws located on the top side and bottom side of the inverter to reach the fixing spacers and the signal connector (Figure 206 – Slot C.)

CAUTION

Before removing the inverter cover, draw out the keypad and disconnect the cable connecting the keypad to the control board to avoid damaging the link between the keypad and the control board.

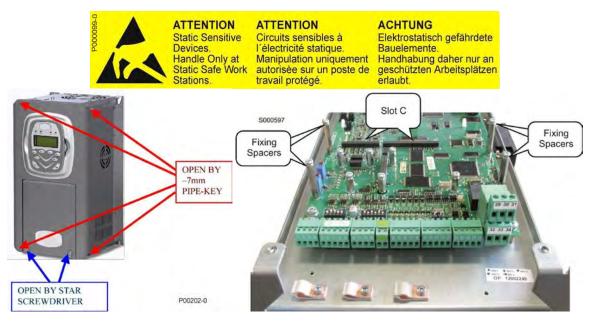


Figure 206: Removing the inverter cover; location of slot C

- 3. Insert the two contact strips supplied in the bottom part of ES870 board; make sure that each contact enters its slot in the connector. Insert ES870 board over the control board of the PENTA inverter; make sure that each contact enters its slot in the signal connector. Use the screws supplied to fasten board ES870 to the fixing spacers.
- 4. For the terminal board wiring, follow the instructions given in the section below.
- 5. Close the inverter frame by reassembling the cover allowing gaining access to the inverter control terminals.

6.16.3. ES870 Board Terminals

Screwable terminal board in two extractable sections suitable for cross-sections $0.08 \div 1.5 \text{mm}^2$ (AWG 28-16)

Decisive voltage class A according to EN 61800-5-1.

N.	Name	Description	I/O Features	Note
1	XMDI1	Multifunction auxiliary digital input 1	Opto-isolated digital inputs 24 VDC; positive logic	Maximum
2	XMDI2	Multifunction auxiliary digital input 2	(PNP): active with positive input in respect to 0VE	response time
3	XMDI3	Multifunction auxiliary digital input 3	(terminals 6 or 12).	to
4	XMDI4	Multifunction auxiliary digital input 4	In compliance with EN 61131-2 as type-1 digital inputs with rated voltage equal to 24 VDC.	microprocessor: 500μs
5	+24VE	Auxiliary supply output/input for opto-isolated multifunction digital inputs/relay coils (*)	+24V±15%; Imax output: 125mA; I max input: 75mA Protected with resettable fuse.	
6	0VE	0V for digital inputs isolated in respect to control 0V	Opto-isolated zero volt for digital inputs; test voltage 500Vac 50Hz 1' in respect to inverter CMA inputs	
7	XMDI5	Multifunction auxiliary digital input 5		500μs
8	XMDI6 / ECHA / FINA	Multifunction auxiliary digital input 6 /Push-pull 24V single-ended phase A encoder input/Frequency input A	Opto-isolated digital inputs 24 VDC; positive logic (PNP): active with positive input in respect to 0VE	Maximum
9	XMDI7 / ECHB	Multifunction auxiliary digital input 7/ Push-pull 24V single-ended phase B encoder input	(terminals 6 or 12). In compliance with EN 61131-2 as type-1 digital inputs with rated voltage equal to 24 VDC.	response time to microprocessor: 600ns
10	XMDI8 / FINB	Multifunction auxiliary digital input 8/ Frequency input B		000113
11	+24VE	Auxiliary supply output/input for opto-isolated multifunction digital inputs/relay coils (*)	+24V±15%; Imax output: 125mA; I max input: 75mA Protected with resettable fuse.	
12	0VE	0V for digital inputs isolated in respect to control 0V	Opto-isolated zero volt for digital inputs; test voltage 500Vac 50Hz 1' in respect to inverter CMA inputs	

The total load on +24VE inverter connection must not exceed 200mA. The total load is referred to all +24VE connections available on the main terminal board and the option terminal board. The relay coils fitted on ES870 option board can sink up to 75mA from +24VE. Coil consumption must be subtracted from the 200mA rated current capability.

By opening jumper J1, terminal n. 5 and 11 can be used as +24Vdc supply input for relay coils, unloading the inverter internal power supply.

Screwable terminal board in three extractable sections suitable for cross-sections $0.2 \div 2.5 \text{mm}^2$ (AWG 24-12)

Decisive voltage class C according to EN 61800-5-1

N.	Name	Description	I/O Features
13	XDO1-NC	Multifunction, relay digital output 1 (NC contact)	Change-over contact: with low logic level, common terminal is closed with NC terminal; with high logic level, common
14	XDO1-C	Multifunction, relay digital output 1 (common)	terminal is open with NO; Resistive load capability:
15	XDO1-NO	Multifunction, relay digital output 1 (NO contact)	Vomax = 250 VAC, Iomax = 5A
16	XDO2-NC	Multifunction, relay digital output 2 (NC contact)	Vomax = 30 VDC, Iomax = 5A Inductive load capability (L/R=7ms):
17	XDO2-C	Multifunction, relay digital output 2 (common)	Vomax = 250 VAC, Iomax = 1.5A
18	XDO2-NO	Multifunction, relay digital output 2 (NO contact)	Vomax = 30 VDC, Iomax = 1.5A
19	XDO3-NC	Multifunction, relay digital output 3 (NC contact)	Isolation test voltage between contacts and coil 2500Vac 50Hz, 1'
20	XDO3-C	Multifunction, relay digital output 3 (common)	Min. load: 15mA, 10Vdc
21	XDO3-NO	Multifunction, relay digital output 3 (NO contact)	
22	XDO4-NC	Multifunction, relay digital output 4 (NC contact)	
23	XDO4-C	Multifunction, relay digital output 4 (common)	
24	XDO4-NO	Multifunction, relay digital output 4 (NO contact)	
25	XDO5-NC	Multifunction, relay digital output 5 (NC contact)	
26	XDO5-C	Multifunction, relay digital output 5 (common)	
27	XDO5-NO	Multifunction, relay digital output 5 (NO contact)	
28	XDO6-NC	Multifunction, relay digital output 6 (NC contact)	
29	XDO6-C	Multifunction, relay digital output 6 (common)	
30	XDO6-NO	Multifunction, relay digital output 6 (NO contact)	

6.16.3.1. Connection to an Encoder or a Frequency Input

Auxiliary digital inputs XMDI6, XMDI7, XMDI8 may acquire fast digital signals and may be used for the connection to a push-pull single-ended incremental encoder or for the acquisition of a frequency input.

NOTE

When ES847 board is fitted, encoder B functions are no more implemented by the basic terminal board of the control board, but are implemented by ES847 board.

The electrical ratings of the aux digital inputs above are the same as the corresponding inputs in optional control board ES847.

For more details, please refer to Connection to an Encoder or a Frequency Input and ES847 Board Terminals.

6.17. I/O Expansion Board 120/240Vac ES988 (SLOT C)

ES988 option board 120/240Vac allows incrementing the digital I/O set of all products of the Sinus Penta line.

The additional functions made available by ES988 option board are the following:

- N. 8 multifunction opto-isolated digital inputs. Each input features:
 120 Vac ÷ 240 Vac +10% / -15% supply voltage; 50 / 60 Hz frequency
- N. 4 relay multifunction digital outputs. Each output features:

N.1 changeover contact (Vomax = 250 VAC, Iomax = 6 A, Vomax = 30 VDC, Iomax = 6 A)

The digital inputs are divided into four groups; each group features three terminals: two terminals as the inputs and one terminal as the common for the whole group.

The two inputs of each group are to be powered by a single-phase circuit, with the neutral connected to the common of the group.

The four groups are isolated from each other, so that they can be powered also by four different power supply sources.

All digital inputs and relay outputs are programmable. For the programming parameters related to ES988 option board, please refer to the Programming Guide.

Figure 207 shows ES988 option board including the description of the terminal blocks:

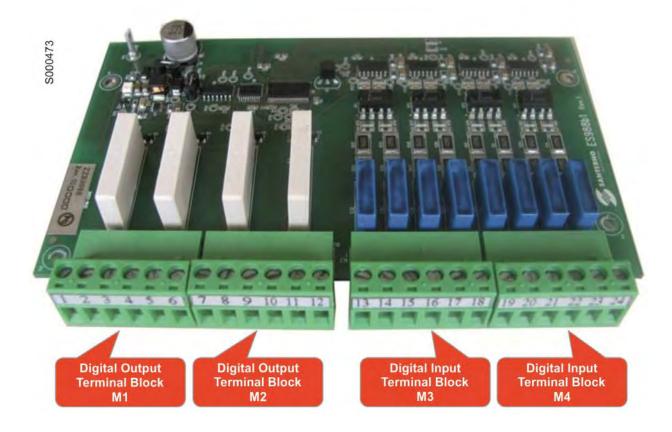


Figure 207: ES988 option board, DIGITAL I/O 120/240 Vrms

6.17.1. Identification Data

Description	Part Number
ES988 DIGITAL I/O 120/240 Vrms	ZZR0988A0

6.17.2. Installing ES988 option board on the Sinus Penta (SLOT C)

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- 2. The electronic components of the inverter and the board are sensitive to the electrostatic discharges. Take all the necessary safety measures before accessing the inverter and handling the board. The board should be installed in a workstation equipped with proper grounding and provided with an antistatic surface. If this is not possible, the installer must wear a ground bracelet properly connected to the PE conductor.

3. Loosen the two front screws located in the lower part of the inverter cover to remove the covering of the terminal board. You can then reach slot C in the PENTA control board where ES988 is to be installed, as shown in Figure 208.

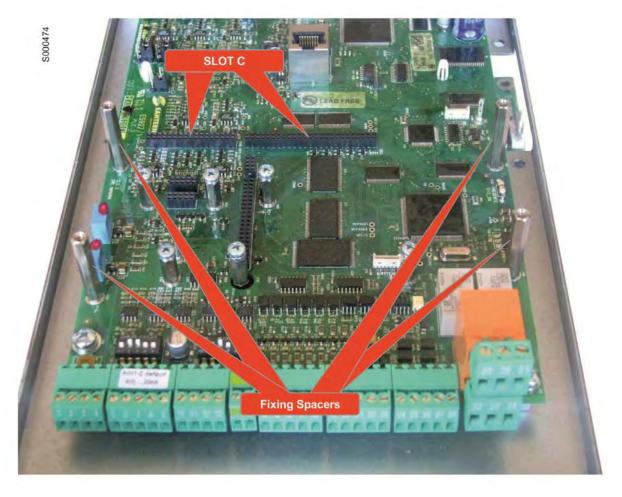


Figure 208: Location of slot C inside the terminal board cover

4. Insert the communications board into slot C; make sure that the connector bars with the two connectors in slot C (CN7A and CN7B) are correctly aligned. See Figure 209. If the board is correctly installed, the four fastening holes will match with the housings of the fastening screws for the fixing spacers. Tighten the board fixing screws as shown in Figure 217.

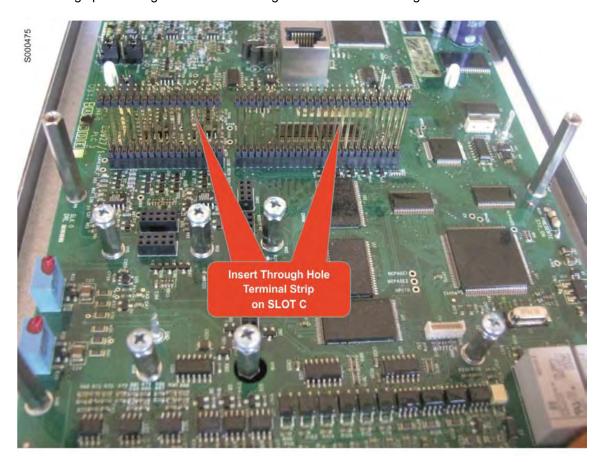


Figure 209: Inserting connector bars into slot C

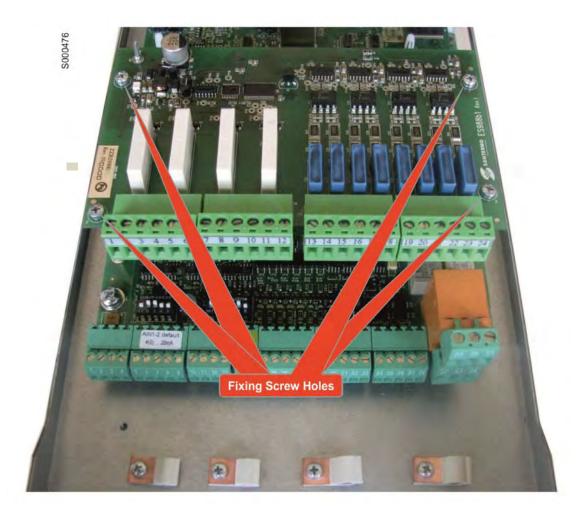


Figure 210: Fastening ES988 option board inside the inverter

5. Apply voltage to the inverter and check if LED L1 (+5V voltage correctly applied to board ES988) comes on. Program the parameters related to auxiliary board ES988 following the instructions given in the Programming Guide.

DANGER

CAUTION

NOTE

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for the complete discharge of the internal capacitors to avoid electric shock hazard.

Do not connect or disconnect signal terminals or power terminals when the inverter is powered to avoid electric shock hazard and to avoid damaging the inverter and/or the connected devices.

All fastening screws for removable parts (terminal cover, serial interface connector, cable path plates, etc.) are black, rounded-head, cross-headed screws.

Only these screws may be removed when connecting the equipment. Removing different screws or bolts will void the product guarantee.

6.17.3. Digital Input Terminals and Relay Output

Loose terminal blocks, 5.08 mm pitch.

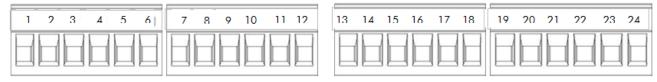


Figure 211 shows the pin layout seen from the cable entry.

Figure 211: Input-output signal terminal blocks

Table 1 shows the ID and description of the loose terminal blocks, pitch 5.08 mm:

N.	Name	Description
1	COM1	Relay output 1 common
2	NC1	NC Relay output 1
3	NO1	NO Relay output 1
4	COM2	Relay output 2 common
5	NC2	NC Relay output 2
6	NO2	NO Relay output 2
7	COM3	Relay output 3 common
8	NC3	NC Relay output 3
9	NO3	NO Relay output 3
10	COM4	Relay output 4 common
11	NC4	NC Relay output 4
12	NO4	NO Relay output 4
13	MDI1	Digital input 1
14	COM1-2	Digital inputs 1-2 common
15	MDI2	Digital input 2
16	MDI3	Digital input 3
17	COM3-4	Digital inputs 3-4 common
18	MDI4	Digital input 4
19	MDI5	Digital input 5
20	COM5-6	Digital inputs 5-6 common
21	MDI6	Digital input 6
22	MDI7	Digital input 7
23	COM7-8	Digital inputs 7-8 common
24	MDI8	Digital input 8

Table 1: Terminal block ID and description

CAUTION

The cable cross-section required for wiring the digital inputs is 0.5 ÷ 2.5 mm². The operating voltage must not be lower than the digital input supply voltage.

CAUTION

The cable cross-section required for wiring the relay outputs is $0.5 \div 2.5 \text{ mm}^2$. The operating voltage must not be lower than the relay output supply voltage. The cable cross-section required for the relay outputs is based on the operating current in the relay output contacts.

NOTE

The cable path of the digital input cables must not be parallel to the motor cables and must not be close to disturbance sources (relays, motors, inverters, solenoids): the minimum clearance required is over 100 mm.

6.17.4. ES988 Operating Mode

Figure 212 shows the block diagram of ES988 board as per the digital inputs acquired from the field, the activation of the relay digital outputs to the field and the interface to the control board. Figure 212 shows the position of LED L1 indicating that +5 V supply voltage is present.

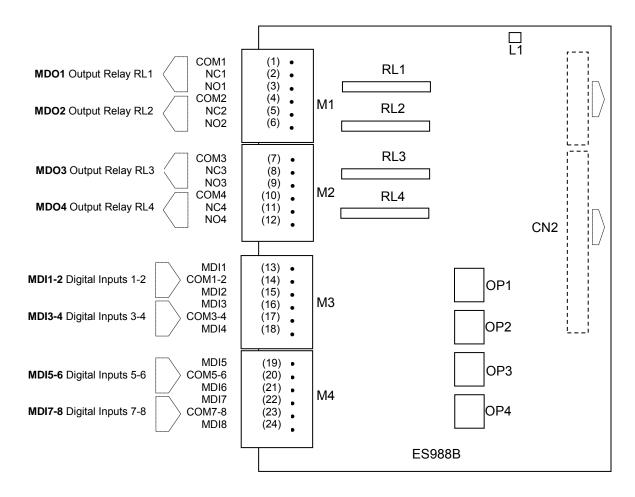


Figure 212: Block diagram for ES988 interfacing

Figure 213 shows an example of how to use digital inputs MDI1-2 and MDI3-4 energized via the same 120 \div 240 Vrms single-phase source.

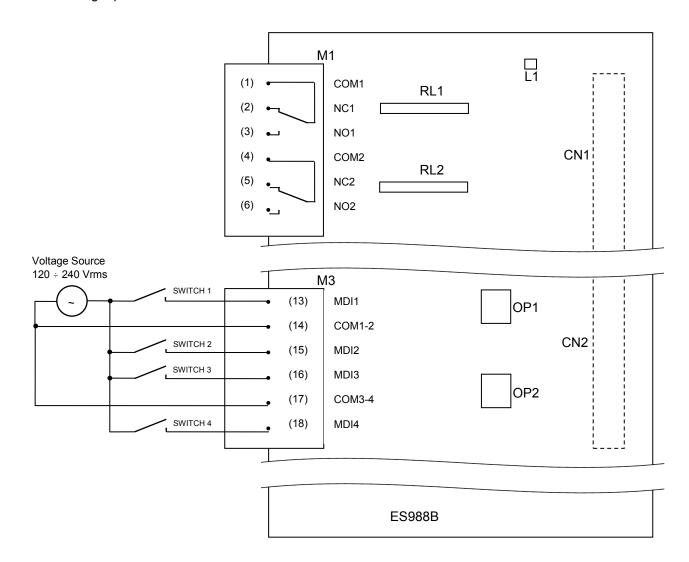


Figure 213: Utilization example of digital inputs on ES988 option board

6.17.5. Main Features

The inverters of the Sinus PENTA line equipped with ES988 option board meet the requirements of EMC Directive 2004/108/CE and LVD 2006/95/CE issued by the European Union. They also comply with the relevant Harmonized Standards.

ES988 option board is made of 'UL approved' materials and components.

NOTE

The installer is responsible for the observance of all the local regulations in force concerning wiring, health and safety and electromagnetic compatibility.

Carefully consider the conductor cross-sections, the fuses or other safety devices to be installed, as well as the Protective Earthing connection.

6.17.6. Environmental Conditions

Operating temperature	-10 to +55°C ambient temperature (contact Elettronica Santerno for
	higher ambient temperatures)
Relative humidity	5 to 95% (non-condensing)
Max. operating altitude	2000 m a.s.l. For installation above 2000 m and up to 4000 m, please contact Elettronica Santerno.

6.17.7. Electrical Specifications

Decisive voltage class C according to EN 61800-5-1

Digital Input Static Specs		Value			
		Тур.	Мах.	Unit	
Type of input signal MDI1-2 (MDI1, MDI2 in respect to COM1-2) MDI3-4 (MDI3, MDI4 in respect to COM3-4) MDI5-6 (MDI5, MDI6 in respect to COM5-6) MDI7-8 (MDI7, MDI8 in respect to COM7-8)	Digital inputs from the field				
Input voltage range		120/240	265	V AC	
Voltage level for signal "1"				V AC	
Voltage level for signal "0"			20	V AC	
Input current range @ 50 Hz		1.8 / 3.6	4	mA AC	
Input current range @ 60 Hz	1.8	2.2 / 4.4	4.8	mA AC	

CAUTION

Exceeding the maximum allowable input voltage ratings will result in irreparable damage to the apparatus.

Digital Input Electrical Isolation	Value
Isolation of digital inputs MDI1-2 (MDI1, MDI2 in respect to COM1-2)	NO galvanic isolation
Isolation of digital inputs MDI3-4 (MDI3, MDI4 in respect to COM3-4)	NO galvanic isolation
Isolation of digital inputs MDI5-6 (MDI5, MDI6 in respect to COM5-6)	NO galvanic isolation
Isolation of digital inputs MDI7-8 (MDI7, MDI8 in respect to COM7-8)	NO galvanic isolation
Isolation between contiguous sets of digital inputs: MDI1-2 in respect to MDI3-4 MDI3-4 in respect to MDI5-6 MDI5-6 in respect to MDI7-8	1.5 kV AC @ 50 Hz, 60 s
Isolation between digital inputs and Protective Earthing MDI1-2 in conjunction with MDI3-4, MDI5-6, MDI7-8 in respect to Hole H4 for fixing Protective Earthing to control board	1.5 kV AC @ 50 Hz, 60 s
Isolation between digital inputs and control logics MDI1-2 in conjunction with MDI3-4, MDI5-6, MDI7-8 in respect to GND	2.5 kV AC @ 50 Hz, 60 s
Isolation between digital inputs and relay outputs MDI1-2 in conjunction with MDI3-4, MDI5-6, MDI7-8 in respect to MDO1 in conjunction with MDO2, MDO3, MDO4	2.5 kV AC @ 50 Hz, 60 s

Polov Output Static Space	Value			
Relay Output Static Specs	Min.	Тур.	Max.	Unit
Type of output signals MDO1 - MDO2 - MDO3 - MDO4	Relay digital signal to field			
AC voltage range / continuous AC current applicable to the contacts (resistive load)			250 / 6	V/A
AC1 Nominal load applicable to contacts (resistive load)			1500	VA
AC15 Nominal load applicable to contacts (inductive load)			300	VA
DC1 Breaking capacity applicable to the contacts (resistive load)			30 / 6 110 / 0.2 220 / 0.12	V/A
DC switchable minimum load			500 (12 / 10)	mW V/A

CAUTION

Exceeding the maximum allowable output current and voltage will result in irreparable damage to the apparatus.

Relay Output Electrical Isolation	Value
Isolation between contiguous sets of relay outputs MDO1 in respect to MDO2 MDO2 in respect to MDO3 MDO3 in respect to MDO4	1.5 kV AC @ 50 Hz, 60 s
Isolation between relay outputs and Protective Earthing MDO1 in conjunction with MDO2, MDO3, MDO4 in respect to Hole H3 for fixing Protective Earthing to control board	1.5 kV AC @ 50 Hz, 60 s
Isolation between relay outputs and control logics MDO1 in conjunction with MDO2, MDO3, MDO4 in respect to GND	2.5 kV AC @50 Hz, 60 s

6.18. ES914 Power Supply Unit Board

Figure 214: ES914 Power supply unit board

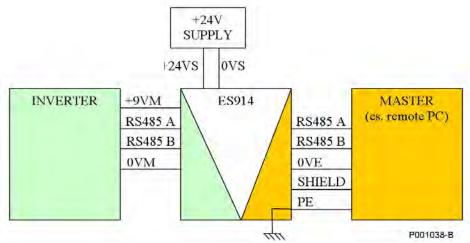
Description of ES914 board

ES914 board provides insulated power supply to the inverters of the Sinus Penta series through RS485 connector (see Auxiliary Power Supply). It is supplied on a board-holder support with rear plug connector for DIN rail type OMEGA 35mm.

ES914 board also provides insulation of RS485 signals on the inverter connector. Using ES914 board is recommended for galvanic insulation between the control circuits of the inverter and the external communication circuits.

3-zone insulation is provided: the 24Vdc supply input section, the RS485 section on the Master side and RS485 + 9Vdc supply output on the inverter side are electrically isolated (see Figure 216).

ES914 board transmits data in just one direction at a time (half-duplex transmission).


Transmission is typically started by the Master device, that transmits a poll packet. When receiving the start bit and the poll packet, the communication channel of the Master port opens towards the inverter port and it is kept open until the whole packet is received for a time over 4 byte-time at allowable minimum baud-rate. When the transmission time is over, both ports go idle.

The inverter then transmits the response packet. When the start bit of the response packet is received, the communications channel opens on the inverter side towards the Master port; when a second delay time has elapsed, the transmission cycle is complete.

ES914 board is equipped with two indicator LEDs indicating RS485 communication failures. Wiring mismatch (if any) is also detected.

ES914 board is provided with transient voltage suppressors (TVS) for the suppression of surge transients caused by bad weather events affecting RS485 serial communication cable reaching the Master device (the external device dialoguing with the inverter via ES914 board). ES914 board complies with EN 61000-4-5: Level 4, Criterion B.

SHIELDED CABLE FOR RS485 LINK PE-SHIELD Connection:

- Optional on inverter-side
- On master-side, it makes the signal discharger totally ineffective

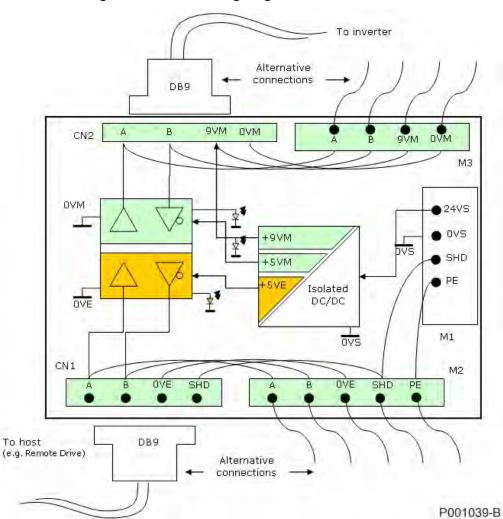


Figure 215: Basic wiring diagram for ES914 board

Figure 216: Block-diagram with 3-zone insulation

6.18.1. Identification Data

Description	Part Number
ES914 Adaptor for aux. power supply	ZZ0101790

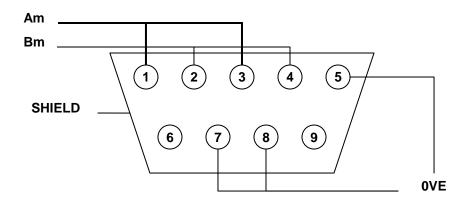
6.18.2. Wiring ES914 Board

ES914 board includes three terminal boards and two connectors.

The signal connections going to the RS485 Master and to the inverter are available both on the screwable terminals and to DB9 connectors. This allows maximum wiring flexibility.

The SHIELD and PE conductors are located on the power supply input terminals. The PE conductor is to be connected to the safety conductor of the cabinet where the equipment is installed. The SHIELD connector is the shield of the communication cable reaching the RS485 Master. You can then decide whether and where to connect the cable shield.

The specifications of the terminals and the connectors are given below.

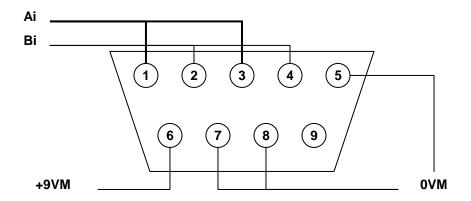

• M1 Terminals: power supply of ES914 board – separable terminals, 3.81mm pitch, suitable for 0.08 ÷ 1.5mm² (AWG 28-16) cables.

Terminal N.	Name	Description
1	+24VS	ES914 Power supply input
2	0VS	ES914 Power supply common
3	SHD	Shield of RS485 wire for external connections
4	PE	Protective Earth

• M2 Terminals: RS485 connection to the Master: separable terminals, 3.81mm pitch, suitable for 0.08 ÷ 1.5mm² (AWG 28-16) cables.

Terminal N.	Name	Description
5	RS485 Am	RS485 signal (A) – Master
6	RS485 Bm	RS485 signal (B) – Master
7	0VE	Common for connections to the Master
8	SHD	Shield of RS485 wire
9	PE	Protective Earth

• CN1 Connector: RS485 connection to the Master: male DB9 connector



• M3 Terminals: RS485 connection to the inverter: separable terminals, 3.81mm pitch, suitable for 0.08 ÷ 1.5mm² (AWG 28-16) cables.

Terminal N.	Name	Description
10	RS485 Ai	RS485 (A) signal – Inverter
11	RS485 Bi	RS485 (B) signal – Inverter
12	0VM	Common for connections to the inverter
13	+9VM	Inverter power supply output

CN2 connector: RS485 connection to the inverter: female DB9 connector

Recommended connection to the inverter

It is recommended that a shielded cable with DB9 connectors be used. Connect both ends of the cable shield so that it is the same PE voltage as the inverter. The shielded cable shall have at least one twisted pair for signals RS485 A and B. Two additional conductors and one additional twisted pair for the conductors of the inverter auxiliary power supply +9VM and 0VM are also required. Make sure that the cable length and cross-section are adequate, thus avoiding excessive voltage drop. For cable length up to 5m, the recommended minimum cross-section is 0.2mm² (AWG24) for the signal conductors and the power supply conductors.

Recommended connection to the Master

It is recommended that a shielded cable with at least one twisted pair be used. The cable shield shall be connected to the SHIELD terminal of the connector. The connection of the cable shield allows full exploitation of the suppressors located on the Master conductors.

The shielded cable shall have at least one twisted pair for signals RS485 A and B and shall propagate the common signal (0VE).

The following specifications are recommended for the shielded cable:

Type of cable	Shielded cable composed of a balanced pair named D1/D0 + common conductor ("Common").
Recommended cable model	Belden 3106 (distributed from Cavitec)
Min. cross-section of the conductors	AWG24 corresponding to 0.25mm ² . For long cable length, larger cross-sections up to 0.75mm ² are recommended.
Max. cable length	500 metres (based on the max. distance between two stations)
Characteristic impedance	Better if exceeding 100 Ω (120 Ω is typically recommended)
Standard colours	Yellow/brown for D1/D0 pair, grey for "Common" signal

Power Supply LEDs

ES914 board is equipped with three indicator LEDs for indicating the status of the power supply voltage.

LED	Colour	Function
L1	Green	Presence of power supply voltage (5V) in inverter-side RS485 circuits
L2	Green	Presence of inverter power supply voltage (9V)
L3	Green	Presence of power supply voltage (5V) in Master-side RS485 circuits

RS485 FAULT Signals

ES914 board is equipped with two LEDs indicating the fault status for the RS485 signals both on the inverter side and to the Master side. The FAULT indication is valid only when the line is properly terminated, i.e. DIP-switches SW1 and SW2 are "ON".

LED	Colour	Function
L5	Red	Inverter-side RS485 signal fault
L6	Red	Master-side RS485 signal fault

The following faults can be detected:

- Differential voltage between A and B lower than 450mV
- A or B exceed the common mode voltage range [-7V; 12V]
- A or B connected to fixed voltage (this condition can be detected only when communication is in progress).

Diagnostic Display

Figure 217 shows the indicator LEDs and the configuration DIP-switches of ES914 board.

Configuration of ES914 board

ES914 board includes two 2-position DIP-switches. These DIP-switches allow RS485 line termination to be configured both on inverter-side and on master-side.

DIP- switch	Function	Notes
SW1	Master-side RS485 termination	ON: 150Ω resistor between A and B; 430Ω resistor between A and +5VE; 430Ω resistor between B and 0VE (default) OFF: no termination and polarisation resistor
SW2	Inverter-side RS485 termination	ON: 150Ω resistor between A and B; 430Ω resistor between A and +5VM; 430Ω resistor between B and 0VM (default) OFF: no termination and polarisation resistor

Electrical Specifications -		Value			
Electrical Specifications	Min.	Тур.	Мах.	Unit	
Operating temperature range of the components (standard version)	0		70	°C	
Max. relative humidity (non-condensing)			95	%	
Environment pollution degree (according to EN 61800-5-1)			2		
Degree of protection of the plastic case	IP20				
Insulation test voltage between the encoder signals and the power supply ground	500Vac 1'				
Connection to the inverter	Value				
Connection to the inverter	Min.	Тур.	Мах.	Unit	
Input voltage	19	24	30	V	
Power supply voltage to the inverter	8.5	9.16	11.1	V	
Inverter power supply output current			830	mA	
Input lines	Two lines: signals A and B, RS485 bus				
Type of input signals	RS485 Standard				
Type of input signals	(from 4800bps to 115200bps)				
Connection to the newer county line	Value				
Connection to the power supply line	Min.	Тур.	Мах.	Unit	
+24V Power supply absorption			700	mA	
Compliance					
EN 61000-4-5	Level 4, Criterion B				

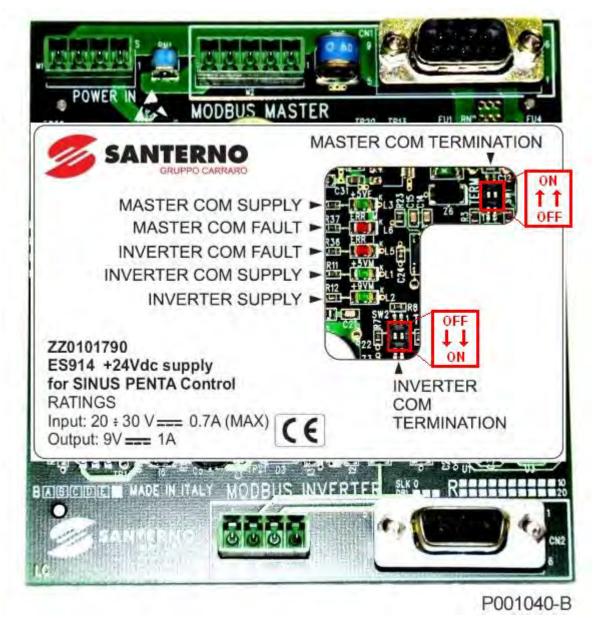


Figure 217: Position of the LEDs and DIP-switches in ES914 board

6.19. <u>"Loc-0-Rem" Key Selector Switch And Emergency Push-Button for IP54 Models</u>

The IP54 models can be provided with a key selector switch and an emergency push-button (optional devices supplied by request).

The key selector switch selects the following operating modes:

POSITION	OPERATING MODE	DESCRIPTION
LOC	INVERTER IN LOCAL MODE	The inverter operates in "Local" mode; the Start command and
		the frequency/speed reference are sent via display/keypad.
0	INVERTER DISABLED	Inverter disabled
REM	INVERTER IN REMOTE	The control mode is defined by programming in parameters
	MODE	C140 ÷ C147 of the Control Method menu.

When pressed, the emergency push-button immediately stops the inverter.

An auxiliary terminal board with voltage-free contacts is provided for the selector switch status, the emergency push-button status and the Enable command.

TERMINALS	FEATURES	FUNCTION	DESCRIPTION	
1	Opto-isolated digital input	ENABLE	Connect terminal 1 to terminal 2 to enable the inverter (terminals 1 and 2 are connected together—factory-setting)	
2	0 V digital inputs	CMD	digital input ground	
3-4	voltage-free contacts (230V - 3A, 24V - 2.5A)	STATUS OF LOC-0-REM SELECTOR SWITCH	position LOC; contacts open: selector switch in	
5-6	voltage-free contacts (230V - 3A, 24V - 2.5A)	STATUS OF LOC-0-REM SELECTOR SWITCH	position 0 or REM contacts closed: selector switch in position REM; contacts open: selector switch in position 0 or LOC	
7-8	voltage-free contacts (230V - 3A, 24V - 2.5 A)	STATUS OF EMERGENCY PUSH- BUTTON	contacts closed: emergency push- button not depressed contacts open: emergency push- button depressed	

NOTE

When the key selector switch and the emergency push-button are installed, multifunction digital input MDI4 (terminal 12) cannot be used.

The ground of multifunction digital inputs is available also on terminal 2 in the auxiliary terminal board.

6.20. <u>Wiring IP54 Inverters with Optional "LOC-0-REM" Key Selector Switch and</u> Emergency Push-button

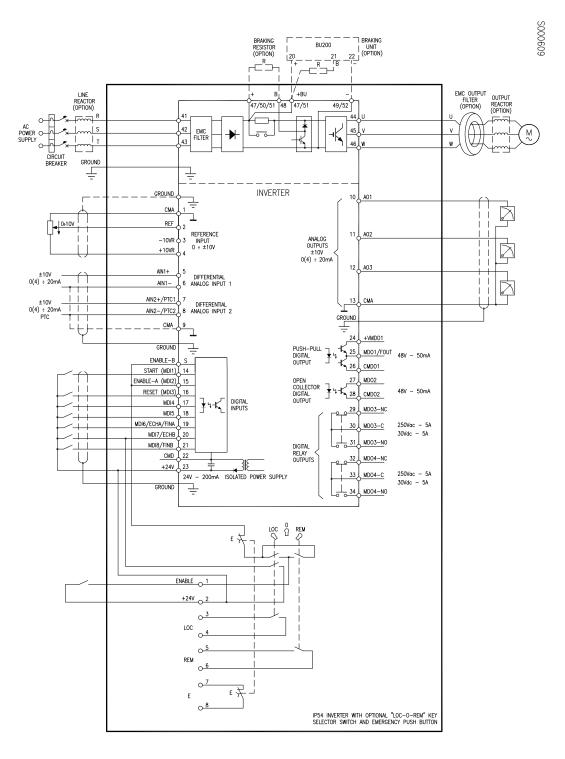


Figure 218: Wiring diagram for IP54 inverters

CAUTION The wiring shown in this schematic does not allow to implement the STO function.

6.21. ES860 SIN/COS Encoder Board (Slot A)

The ES860 Sin/Cos Encoder board allows interfacing encoders provided with 1Volt peak-to-peak analog outputs. Those encoders may be used to provide speed feedback and/or position feedback for the inverters of the Sinus PENTA series.

NOTE

Please refer to the Programming Guide and the Guide to the Synchronous Motor Application for the available control algorithms.

The ES860 board may be configured to operate in two acquisition modes as follows:

- Three-channel mode: increments low speed resolution and is suitable for slow rotation speed actuators requiring very accurate measurement of speed and position.
- **Five-channel mode:** detects the absolute mechanical position as soon as the inverter is first started up.

The board features are given below:

- Acquisition of five 1Volt peak-to-peak analog inputs on balanced line
- Two channels acquired via zero crossing and bidirectional digital counter with quadrature direction discriminator and x4 resolution multiplication factor (e.g. 1024 ppr to 4096 ppr)
- Zero index control for accurate alignment
- Two channels acquired in analog mode for absolute angle detection (12-bit resolution)
- Max. 140kHz input frequency in zero crossing channels for speeds up to 800rpm with 1024 ppr; alternatively up to 2000rpm with 4096 ppr
- Maximum 1kHz input frequency in analog channels
- Ability to re-direct analog signals to zero crossing channels
- Galvanic isolation in all channels for both digital and analog inputs
- 5V and 12V power supply output allowing fine tuning of the output voltage, isolated from the common for power supply output and signal output of the inverter.

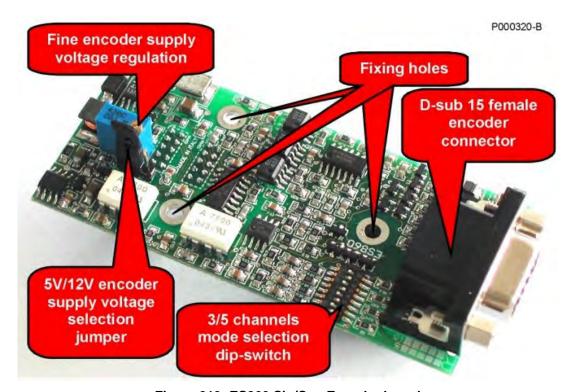


Figure 219: ES860 Sin/Cos Encoder board

6.21.1. Identification Data

Dosorintion	Part	COMPATIBLE ENCODERS			
Description	Number	POWER SUPPLY	OUTPUT		
ES860 Encoder SIN/COS Interface	ZZ0101830	5V, 12V, 15V, (5÷15V)	Sin/Cos encoder, 1Vpp, on three or five differential channels		

6.21.2. Installing ES860 Board on the Inverter (Slot A)

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- 2. The electronic components in the inverter and the communications board are sensitive to electrostatic discharge. Take any safety measure before operating inside the inverter and before handling the board. The board should be installed in a workstation equipped with proper grounding and provided with an antistatic surface. If this is not possible, the installer must wear a ground bracelet properly connected to the PE conductor.

Remove the protective cover of the inverter terminal board by unscrewing the two screws on the front lower part of the cover. Slot A where the ES860 board will be installed is now accessible, as shown in the figure below.

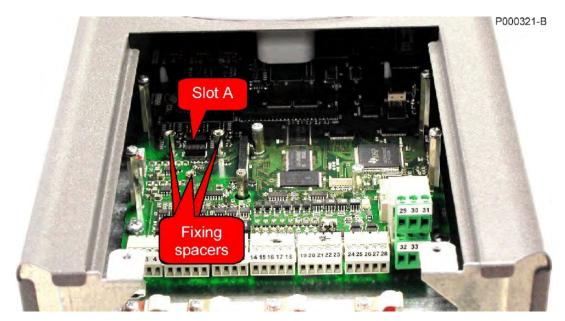


Figure 220: Location of Slot A inside the terminal board covers in Sinus PENTA inverters.

4. Insert ES860 board into Slot A. Carefully align the contact pins with the two connectors in the slot. If the board is properly installed, the three fixing holes are aligned with the housing of the relevant fixing spacers screws. Check if alignment is correct, then fasten the three fixing screws as show in the figure below.

Figure 221: Fitting the ES860 board inside the inverter.

- 5. Set the correct encoder power supply and the DIP-switch configuration.
- 6. Power the inverter and check if the supply voltage delivered to the encoder is appropriate. Set up the parameters relating to "Encoder A" as described in the Programming Guide.
- 7. Remove voltage from the inverter, wait until the inverter has come to a complete stop and connect the encoder cable.

DANGER

CAUTION

NOTE

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for the complete discharge of the internal capacitors to avoid electric shock hazard.

Do not connect or disconnect signal terminals or power terminals when the inverter is powered to avoid electric shock hazard and to avoid damaging the inverter

All fastening screws for removable parts (terminal cover, serial interface connector, cable path plates, etc.) are black, rounded-head, cross-headed screws.

Only these screws may be removed when connecting the equipment. Removing different screws or bolts will void the product guarantee.

6.21.2.1. Sin/Cos Encoder Connector

High density D-sub 15-pin female connector (three rows). The figure shows a front view of the pin layout.

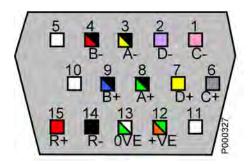


Figure 222: Pin layout on the high density connector

No.	Name	Description	
1	C-	Negative sine signal (absolute position)	
2	D-	Negative cosine signal (absolute position)	
3	A-	Negative sine signal	
4	B-	Negative cosine signal	
5	n.c.		
6	C+	Positive sine signal (absolute position)	
7	D+	Positive cosine signal (absolute position)	
8	A+	Positive sine signal	
9	B+	Positive cosine signal	
10	n.c.		
11	n.c.		
12	+VE	Encoder power output	
13	0VE	Common for power supply and signals	
14	R-	Negative zero index signal acquired with zero crossing	
15	R+	Zero index signal acquired with zero crossing	
Shell	PE	Connector shield connected to Inverter PE conductor	

6.21.3. ES860 Configuration and Operating Modes

The ES860 Encoder Interface Board may power both 5V and 12V encoders and allows acquiring two types of encoders with 1Volt peak-to-peak sinusoidal outputs:

Three-channel mode: signals A (sine), B (cosine), R (zero index).

Input signals C+, C-, D+, D- are not used in three-channel mode. DIP-switch SW1 is to be set as in the figure below: odd-numbered switches to ON and the even-numbered switches to OFF.

Figure 223: DIP-switch SW1 setting in three-channel mode

Five-channel mode: signals A (sine), B (cosine), R (zero index), C (sine, absolute position), D (cosine, absolute position).

All input signals are used in five-channel mode. DIP-switch SW1 shall be set as in the figure below: even-numbered switches to ON, odd-numbered switches to OFF.

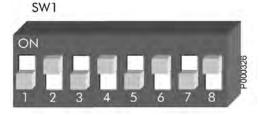


Figure 224: DIP-switch SW1 setting for five-channel mode

CAUTION

Do not alter the DIP-switch configuration and do not enable the configuration switches when the inverter is powered. Unexpected changes in switch settings, even of short duration, cause irreparable damage to the board and the encoder.

6.21.3.1. Configuring and Adjusting the Encoder Supply Voltage

The ES860 board may power encoders having different power supply voltage ratings. A selection Jumper and a power supply voltage regulation Trimmer are available, as shown in the figure below.

Figure 225: Position of the jumper and voltage adjusting trimmer

The ES860 board is factory-set with a minimum output voltage of 4.5V for the power supply of 5V rated encoders. Take account of ±10% due to voltage drops in cables and connector contactors. By using the trimmer, 8V voltage may be supplied.

Set the jumper to 12V to supply 12V or 15V encoders. It is now possible to operate on the trimmer to adjust voltage from 10.5 to 15.7V. Turn the trimmer clockwise to increase output voltage.

Power supply voltage is to be measured at the encoder supply terminals, thus taking account of cable voltage drops, particularly if a long cable is used.

CAUTION

Supplying the encoder with inadequate voltage may damage the component. Before connecting the cable and after configuring ES860 board, always use a tester to check the voltage supplied by the board itself.

NOTE

The encoder power supply circuit is provided with an electronic current limiter and a resettable fuse. Should a short-circuit occur in the supply output, shut down the inverter and wait a few minutes to give the resettable fuse time to reset.

6.21.4. Connecting the Encoder Cable

State-of-the-art connections are imperative. Use shielded cables and correctly connect cable shielding.

The recommended connection diagram consists in a multipolar, dual shielded cable. The inner shield shall be connected to the connected to the ES860 board, while the outer shield shall be connected to the encoder frame, usually in common with the motor frame. If the inner shield is not connected to the encoder frame, this can be connected to the inner braid.

The motor must always be earthed as instructed with a dedicated conductor connected directly to the inverter earthing point and routed parallel to the motor power supply cables.

It is not advisable to route the Encoder cable parallel to the motor power cables. It is preferable to use a dedicated signal cable conduit.

The figure below illustrates the recommended connection method.

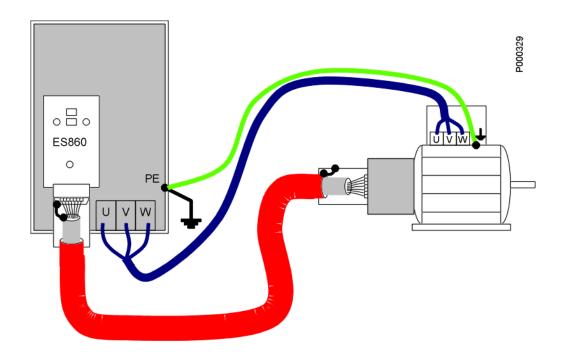


Figure 226: Recommended dual shielded connection for encoder cable

NOTE

The encoder supply output and the encoder signal common are isolated in respect to the common of the analog signals fitted in the inverter terminal board (CMA). Do not connect any conductors in common between the encoder signals and the signals in the inverter terminal board. This prevents isolation from being adversely affected.

The connector of the ES860 board shall be connected exclusively to the encoder using one single cable.

CAUTION

Correctly fasten the cable and the connectors both on the encoder side and on ES860 board side. The disconnection of one cable or even a single conductor may lead to inverter malfunction and may cause the motor to run out of control.

6.21.5. Environmental Requirements

Operating temperatures	-10 to +55°C ambient temperature (contact Elettronica Santerno for higher ambient temperatures)
Relative humidity	5 to 95% (non-condensing)
Max. allowable operating	2000 m a.s.l. For installation above 2000 m and up to 4000 m, please
altitude	contact Elettronica Santerno.

6.21.6. Electrical Ratings

Class A voltage according to EN 61800-5-1

Encoder supply output		Ratings			
		Тур	Max	Unit	
Encoder output current, +12V configuration			300	mA	
Encoder output current, +5V configuration			500	mA	
Short-circuit protection level			900	mA	
Encoder supply voltage adjusting range in 5V Mode	4.5	5.3	8.0	V	
Encoder supply voltage adjusting range in 12V Mode	10.5	12.0	15.7	V	

Static characteristics for signal inputs		Ratings			
		Тур	Max	Unit	
Type of input signals, A,B	Differe	Differential analog type ~1Vpp			
Differential peak-to-peak input voltage range	0.8	1.0	1.2	Vpp	
Input common mode voltage range	0		5	V	
Input impedance		120		ohm	
Type of input signals, C,D		Differential analog type ~1Vpp			
Differential input voltage range		1.0	1.2	Vpp	
Input common mode voltage range			5	V	
Input impedance		1 Kohm			
Type of input signal R			l analog pp/1Vpp		
Differential encoder signal input voltage range	0.2	0.5	1.1	Vpp	
Input common mode voltage range	0		5	V	
Input impedance		120		ohm	

Max. absolute values		Value			
		Тур	Max	Unit	
Maximum allowable common mode voltage amplitude causing no damage			+25	V	
Maximum allowable differential voltage amplitude on channels A, B, R			+3.5	V	
Maximum allowable differential voltage amplitude on channels C and D			+10	V	

	Δ	
/	1	\
	1	/
\angle	•	

CAUTION

Exceeding the maximum differential input or common mode voltages will result in irreparable damage to the apparatus.

Dynamic characteristics of the input signals	Value		
Maximum frequency of the signals acquired in analog mode – channels C,	1000Hz (60,000rpm @ 1 p/rev)		
D or channels A, B in three-channel mode	(60 rpm @ 1,024 p/rev)		
Maximum frequency of signals acquired with digital counting on zero	140kHz (1,024pls @ 8,200rpm)		
crossing – channels A, B			
Minimum duration of zero crossing pulse – channel R	3.5 µs (1,024pls @ 8,200rpm)		

CAUTION

Exceeding the input signal frequency limits will result in a wrong measurement of the encoder position and speed. Depending on the control method selected for the inverter, it may also cause the motor to run out of control.

6.22. <u>ES861 Resolver and Incremental Encoder Board (Slot C)</u>

The ES861 board acquires resolver signals and converts them into 12-bit digital signals that can be used as speed and/or position feedback for the inverters of the Sinus PENTA series.

NOTE

Please refer to the Programming Guide and the Guide to the Synchronous Motor Application for the available control algorithms.

The ES861 board also generates the sinusoidal signal for the resolver excitation and features dedicated logics for the acquisition of differential signals sent from incremental encoders and for the control of opto-isolated digital inputs and outputs.

Main features of the ES861 board:

- Resolver to Digital (RtD) conversion allowing selecting motor position readout or speed readout.
- Configurable frequency and amplitude of the excitation signal to acquire the Resolver encoder with different voltage ratios between excitation and sin/cos signals.
- Encoder input compatible with opto-isolated line-driver (TIA/EIA-422) encoders.
- Line Driver (TIA/EIA-422) incremental encoder output compatible with opto-isolated line-driver (TIA/EIA-422) encoders. It is possible to program the input for encoder repetition or the Resolver input at 1024 pulse/rev.
- Possibility of enabling a frequency divider (by 2, 4, 8) for incremental encoder signals coming from line-driver encoders, or for signals obtained from RtD conversion.
- Configurable encoder supply output (5V, 12V, 24V) allowing output voltage fine-tuning.
- Acquisition of No.3 opto-isolated digital inputs.
- Control of No.3 opto-isolated digital outputs.
- Segregated sections of individually repeated encoder input and encoder output.

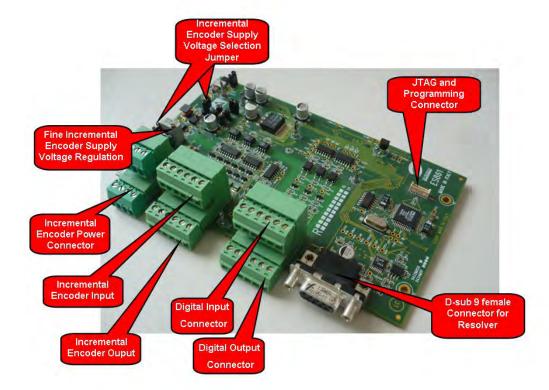


Figure 227: ES861 Incremental Encoder and Resolver expansion board

SINUS PENTA

CAUTION

If ES861 board is fitted into slot C, ES919 board cannot be fitted into slot B (see ES919 Communications Board (Slot B)).

Features of the encoder inputs:

- 77kHz (1024pls @ 4500rpm) for max. input frequency with digital filter enabled
- 155kHz (1024pls @ 9000rpm) for max. input frequency with digital filter disabled
- Input with differential or single-ended signals
- Input signal error detection.

Features of the resolver inputs:

- Configurable excitation frequency ranging from 10kHz to 20 kHz
- Maximum 30 mA RMS current at excitation output
- Maximum 14.4 Vpp (5 VRMS) voltage at excitation output
- Detection of the PTC signal from the Resolver
- 12-bit RtD for positioning (0.0879° x LSB) or speed acquisition range [-60000 ÷ 60000] rpm.

6.22.1. Identification Data

Description	Part Number	RESOLVER and COMPATIBLE ENCODERS
ES861 Resolver and Incremental Encoder Interface	ZZ0101860	 Sin/Cos resolver inputs, 3.6Vpp ± 10% ranging from 10 kHz to 20 kHz. Incremental encoders with signals on balanced line according to standard TIA/EIA-422 and power supply ranging from 5 to 24V.

6.22.2. Installing ES861 Board on the Inverter (Slot C)

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- 2. The electronic components of the inverter and the board are sensitive to electrostatic discharges. Take any safety measure before operating inside the inverter and before handling the board. The board should be installed in a workstation equipped with proper grounding and provided with an antistatic surface. If this is not possible, the installer must wear a ground bracelet properly connected to the PE conductor.

- 3. Remove the protective cover of the inverter terminal board by unscrewing the two screws on the front lower part of the cover. Slot C where ES861 board will be installed is now accessible, as shown in the figure below.
- 4. Insert the ES861 board into Slot C. Carefully align the contact pins with the two connectors in the slot (CN7A and CN7B). If the board is properly installed, the four fixing holes are aligned with the housing of the relevant fixing spacers screws. Check if alignment is correct, then fasten the four fixing screws as show in the figure below.

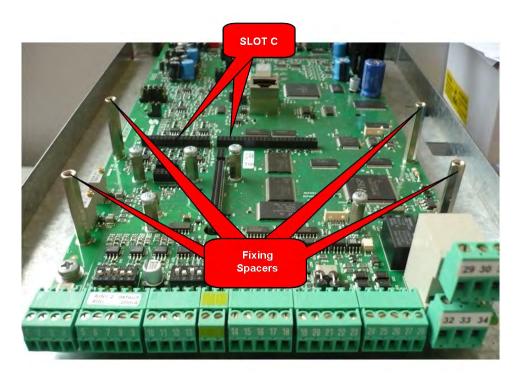


Figure 228: Location of slot C inside the terminal board cover of the Sinus Penta inverter

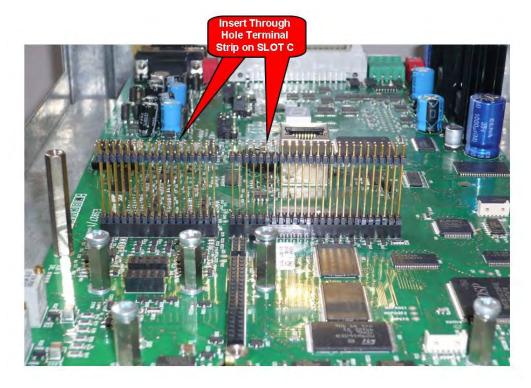


Figure 229: Terminal strips inserted into SLOT C

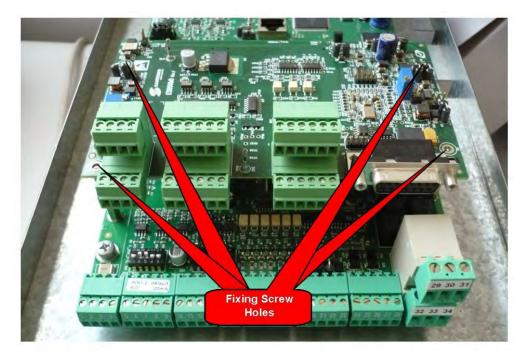


Figure 230: Fitting the ES861 board inside the inverter

- 5. Configure the supply voltage for the incremental encoder (please refer to the relevant User Manual) by setting the configuration jumper accordingly.
- 6. Power the inverter and check if the supply voltage delivered to the encoder is appropriate. Set up the parameters relating to "Encoder A" as described in the Programming Guide.
- 7. Remove voltage from the inverter, wait until the inverter has come to a complete stop and connect the encoder/resolver cable.

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for the complete discharge of the internal capacitors to avoid electric shock hazard.

CAUTION

Do not connect or disconnect signal terminals or power terminals when the inverter is powered to avoid electric shock hazard and to avoid damaging the inverter.

NOTE

All fastening screws for removable parts (terminal cover, serial interface connector, cable path plates, etc.) are black, rounded-head, cross-headed screws

Only these screws may be removed when connecting the equipment. Removing different screws or bolts will void the product guarantee.

6.22.2.1. Resolver Connector

D-sub 9-pin female connector. The figure shows a front view of the PIN layout.

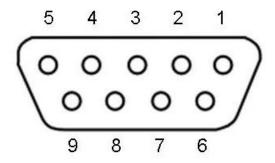
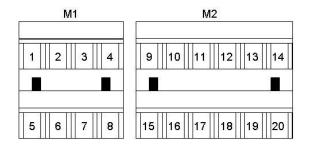



Figure 231: Pin layout on the D-sub 9-pin female connector.

N.	Name	Description
1	EXC+	Resolver excitation output (direct signal)
2	EXC-	Resolver excitation output (complementary signal)
3	SIN+	Sine signal input (direct)
4	SIN-	Sine signal input (complementary)
5	COS+	Cosine signal input (direct)
6	COS-	Cosine signal input (complementary)
7	PTC1	Terminal 1 of the Resolver PTC
8	PTC2	Terminal 2 of the Resolver PTC
9	0V	Board logics power supply common

6.22.2.2. Incremental Encoder and Digital Lines Connectors

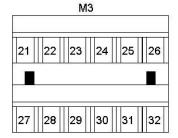


Figure 232: Input-output signal terminal boards

Name	Description
+VEOUT	Incremental encoder power supply output (referred to 0VE)
0VE	Isolated power supply common
0VE	Isolated power supply common
0VE	Isolated power supply common
+5V_EXT	Input for external power supply for repeated encoder output* (referred to 0V_EXT)
+5VE_INT	Isolated 5V power supply generated internally (referred to 0VE)
0V_EXT	External power supply common for repeated encoder output*
0VE	Isolated 5V power supply
CHA	Channel A input for positive incremental encoder
/CHA	Channel A input for inverted incremental encoder (negated)
CHB	Channel B input for positive incremental encoder
/CHB	Channel B input for inverted incremental encoder (negated)
CHZ	Zero index signal
	Zero index signal (negated)
CHA_U	Incremental encoder A signal output from resolver conversion or from encoder input (CHA pin 9) – asserted signal
/CHA_U	Incremental encoder A signal output from resolver conversion or from encoder input
701110	(/CHA pin 10) – negated signal
CHB U	Incremental encoder B signal output from resolver conversion or from encoder input
	(CHB pin 11) – asserted signal
/CHB U	Incremental encoder B signal output from resolver conversion or from encoder input
_	(/CHB pin 12) – negated signal
CHZ_U	Incremental encoder Z signal output from resolver conversion or from encoder input
	(CHZ pin 13) – asserted signal
/CHZ_U	Incremental encoder Z signal output from resolver conversion or from encoder input
	(/CHZ pin 14) – negated signal
	Digital input
	Digital input
XMDI3	Digital input
n.c.	
n.c.	
	Common for digital inputs
	Digital output 1 (collector)
	Digital output 1 (emitter)
XMDO2	Digital output 2 (collector)
	Digital output 2 (emitter)
XMDO3	Digital output 3 (collector)
CMDO3	Digital output 3 (emitter)
	+VEOUT 0VE 0VE 0VE 15V_EXT 15V_EXT 15VE_INT 0VE CHA /CHA CHB /CHZ /CHZ CHA_U /CHA_U /CHB_U /CHZ_U /CHZ_U XMDI1 XMDI2 XMDI3 n.c. n.c. CMD XMDO1 CMDO1 XMDO2 CMDO2 XMDO3

^(*) In order to get internal power supply of the repeated encoder output, link together terminals 5-6 (+5V_EXT) and 7-8 (0V_EXT).

6.22.3. ES861 Configuration and Operating Modes

The ES861 board may power both 5V to 24V encoders and allows acquiring signals coming from the Resolver in order to convert the position/speed data into a 12-bit word.

6.22.4. Configuring and Adjusting the Encoder Supply Voltage

The ES861 board may power encoders having different power supply voltage ratings. A selection jumper and a power supply voltage regulation trimmer are available as shown in the figure below. The jumpers and the trimmer are located on the top side of the board. The possible configurations are given in the table below:

Incremental encoder power supply: VE OUT				No VE OUT
	24V	12V	5V	
J1	X	OFF	ON	Х
J2	2-3	1-2	1-2	Х
J3	ON	ON	ON	OFF

In 24V mode, the output voltage is fixed and cannot be adjusted. In 5 and 12V mode, the output voltage can be fine-tuned: in 5V mode, the no-load voltage may range from 4.5 to 7V by adjusting each individual trimmer accordingly; in 12V mode, the no-load voltage may range from 10.5 to 17V.

Turn the trimmer clockwise to increase output voltage.

Power supply voltage is to be measured at the encoder supply terminals, thus taking account of cable voltage drops, particularly if a long cable is used.

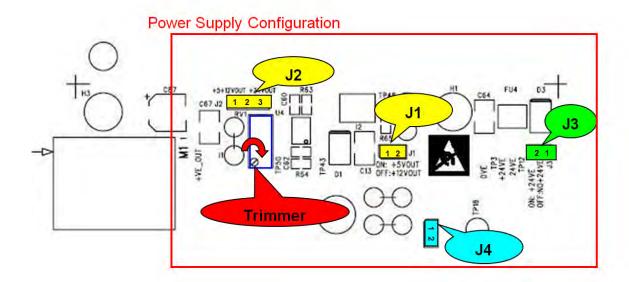


Figure 233: Jumpers and trimmer for power supply configuration

CAUTION

Supplying the encoder with inadequate voltage may damage the component. Before connecting the cable and after configuring the ES861 board, always use a tester to check the voltage supplied by the board itself.

CAUTION

The repeated encoder output section must be power supplied ONLY with $5V\pm10\%$ voltage to terminals 5 (+5V_EXT) and 7 (0V_EXT). It is recommended that the supply voltage generated by the board is applied. That voltage is available at terminals 6 (+5VE_INT) and 8 (0VE). This configuration is obtained by linking terminals 5-6 and 7-8 together. If the signal receiver of the repeated encoder requires a potential-free signal source, an external power supply source is required (5V±10% rated).

NOTE

The encoder power supply circuit is provided with an electronic current limiter and a resettable fuse. Should a short-circuit occur in the supply output, shut down the inverter and wait a few minutes to give the resettable fuse time to reset.

6.22.5. Connecting the Resolver Cable

State-of-the-art connections are imperative. Use shielded cables approved by the Resolver and correctly connect cable shielding.

The recommended connection diagram consists in a multipolar, dual shielded cable with four internal pairs individually shielded and isolated external shield. The inner shields are to be connected to the connector case (SH) connected to ES861 board, while the outer shield shall be connected to the encoder frame, usually in common with the motor case.

The motor must always be earthed as instructed with a dedicated conductor attached directly to the inverter earthing point and routed parallel to the motor power supply cables.

It is not advisable to route the encoder cable parallel to the motor power cables. It is preferable to use a dedicated signal cable conduit.

The figure below illustrates the recommended connection method.

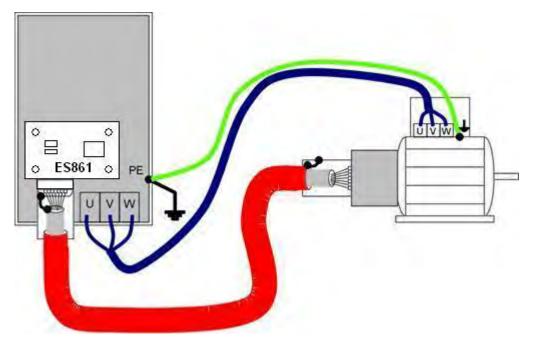


Figure 234: Recommended dual shielded connection for resolver cable

NOTE

The encoder supply output and the encoder signal common are isolated in respect to the common of the analog signals fitted in the inverter terminal board (CMA). Do not connect any conductors in common between the encoder signals and the signals in the inverter terminal board. This prevents isolation from being adversely affected.

The connector of ES861 board shall be connected exclusively to the encoder using one single cable. Do not feed back the cable on terminal boards or DC-link connectors.

CAUTION

Correctly fasten the cable and the connectors both on the encoder side and on ES860 board side. The disconnection of one cable or even a single conductor may lead to inverter malfunction and may cause the motor to run out of control.

6.22.6. Environmental Requirements

Operating temperatures -10 to +55°C ambient temperature (contact Elettronica Sant higher ambient temperatures)					
Relative humidity	5 to 95% (non-condensing)				
Max. allowable operating	2000 m a.s.l. For installation above 2000 m and up to 4000				
altitude	please contact Elettronica Santerno.				

6.22.7. Electrical Ratings

Decisive voltage class A according to EN 61800-5-1

Incremental encoder power supply output		Value			
		Тур	Max	Unit	
Encoder output current, +24V configuration			150	mA	
Encoder output current, +12V configuration			200	mA	
Encoder output current, +5V configuration			500	mA	
24VE Short-circuit protection level			300	mA	
Encoder supply voltage adjusting range in 5V mode (no-load voltage)	4.5	5.3	7	V	
Encoder supply voltage adjusting range in 12V mode (no-load voltage)	10.5	12.0	17	V	

Static characteristics for signal inputs		Value			
Static characteristics for signal inputs	Min	Тур	Max	Unit	
Type of input signals, SIN, COS		Resolv	er signal	s	
Differential input voltage (between SIN+ and SIN-; between COS+ and COS-)		3.6		V	
Input common mode voltage range in respect to AGND	0.2		5	V	
Input impedance	1			Mohm	
Type of input signals, CHA, CHB, CHZ	St	andard	TIA/EIA-	-422	
Differential input voltage range			±7	V	
Input common mode voltage range			±7	V	
Input impedance	150 ohm		ohm		
Type of input signals MDI1, MDI2, MDI3 in respect to COM_MDI		al signa	ls from tl	ne field	
Input voltage range	15	24	30	V	

Max. absolute values		Value			
		Тур	Max	Unit	
Maximum allowable common mode voltage amplitude for channels CHA,	-25		+25	V	
CHB, CHZ					

CAUTION

Exceeding the maximum differential input or common mode voltages will result in irreparable damage to the apparatus.

Dynamic characteristics of the Resolver to Digital converter		Value			
Dynamic diaractersucs of the Nesolver to Digital converter	Min	Тур	Max	Unit	
Band (signal amplitude modulating frequency)	1.5	1.7	2	kHz	
Tracking Rate			60000	rpm	

CAUTION

Exceeding the input signal frequency limits will result in a wrong measurement of the encoder position and speed. Depending on the control method selected for the inverter, it may also cause the motor to run out of control.

Static characteristics of the digital outputs and the encoder outputs —		Value			
		Тур	Max	Unit	
Type of input signals CHA_U, CHB_U, CHZ_U	St	andard	TIA/EIA-	-422	
High logic level voltage	2.5			V	
Low logic level voltage			0.5	V	
Limited common mode voltage	±5.6			V	
Maximum current	rent 50			mA	
Type of output signals, MDOC-E1, MDOC-E2, MDOC-E3	"O	pen Co	llector" s	witch	
Voltage applicable to MDOC without static absorption in "open"			5	V	
configuration					
Maximum current that can be absorbed in "closed" configuration			50	mA	

CAUTION

Exceeding the range in the table may cause irreparable damage to the equipment.

Static and dynamic characteristics for resolver signal excitation		Value			
		Тур	Max	Unit	
EXC, /EXC Output Voltage (load max. 30 mA, self-adjusted)			14.4	Vpp	
EXC, /EXC Frequency	10, 12, 15, 20		20	kHz	

6.23. ES950 BiSS/EnDat Encoder Board (Slot C)

The ES950 BiSS/EnDat encoder board allows connecting absolute encoders with digital serial interface using mutually exclusive BiSS and EnDat 2.2 protocols and allows using them to provide speed feedback and/or position feedback for the inverters of the Sinus PENTA series.

NOTE

Please refer to the Programming Guide and Guide to the Synchronous Motor Application for the available control algorithms.

The absolute measurement allows detecting the exact position of the motor as soon as the inverter is started, thus avoiding demanding alignment checks.

The ES950 board also features control logics for additional functions, such as the acquisition of differential incremental signals from external encoders and the control of opto-isolated digital inputs/outputs.

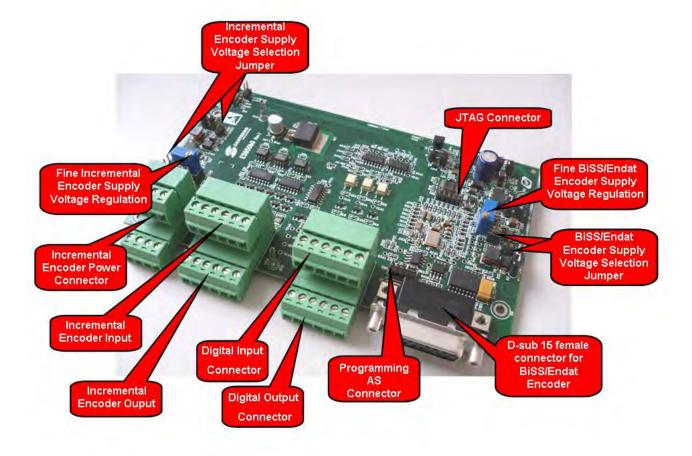


Figure 235: ES950 encoder BiSS/EnDat board

CAUTION

If ES950 board is fitted into slot C, ES919 board cannot be fitted into slot B (see ES919 Communications Board (Slot B)).

Features of the ES950 board:

- Acquisition of absolute position from SingleTurn/MultiTurn Encoder with balanced digital output (TIA/EIA-485) according to EnDat 2.2 protocol, up to max. 8MHz transmission frequency and variable resolution depending on the type of encoder.
- Acquisition of absolute position from SingleTurn/MultiTurn Encoder with balanced digital output (TIA/EIA-485) according to BiSS protocol, up to max. 10MHz transmission frequency and variable resolution depending on the type of encoder.
- Acquisition of differential incremental encoder signals compatible with opto-isolated line-driver (TIA/EIA-422) encoders.
- Galvanic isolation on all the lines.
- Configurable 5V, 12V, 24V output for BiSS/EnDat encoder supply allowing fine-tuning, isolated from the control logics.
- Configurable 5V, 12V, 24V output for external incremental encoders allowing fine-tuning, isolated from the control logics.
- Possibility to repeat the acquired incremental signals over line-driver (TIA/EIA-422) standard.
- Possibility to enable a frequency divider (by 2, 4, 8) for incremental encoder signals coming from line-driver encoders.
- Acquisition of No.3 opto-isolated digital inputs.
- Control of No.3 opto-isolated digital outputs.

The features for the incremental encoder inputs are as follows:

- 77kHz (1024pls @ 4500rpm) max. input frequency when the digital filter is enabled
- 155kHz (1024pls @ 9000rpm) max, input frequency when the digital filter is disabled
- Input with differential or single-ended signals
- Input signal error detection.

6.23.1. Identification Data

Description	Part Number	COMPATIBLE ENCODERS		
ES950 EnDat Encoder Interface	ZZ0101880	 Absolute encoders with balanced digital EnDat interface according to TIA/EIA-485 standard and power supply voltage ranging from 5 to 24V. Incremental encoders with balanced line signals according to TIA/EIA-422 standard and power supply voltage ranging from 5 to 24V 		
ES950 BiSS Encoder Interface	ZZ0101890	 Absolute encoders with balanced digital BiSS interface according to TIA/EIA-485 standard and power supply ranging from 5 to 24V. Incremental encoders with balanced line signals according to TIA/EIA-422 standard and power supply voltage ranging from 5 to 24V. 		

6.23.2. Installing ES950 Board on the Inverter (Slot C)

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- 2. The electronic components in the inverter and the communications board are sensitive to electrostatic discharge. Take any safety measure before operating inside the inverter and before handling the board. The board should be installed in a workstation equipped with proper grounding and provided with an antistatic surface. If this is not possible, the installer must wear a ground bracelet properly connected to the PE conductor.

- 3. Remove the protective cover of the inverter terminal board by unscrewing the two screws on the front lower part of the cover. Slot C housing the control board of the inverter where ES950 board will be installed is now accessible, as shown in the figure below.
- 4. Insert ES950 board into Slot C. Carefully align the contact pins with connectors CN7A and CN7B in the slot. If the board is properly installed, the three fixing holes are aligned with the housing of the relevant fixing spacers screws. Check if alignment is correct, then fasten the three fixing screws as show in the figure below.

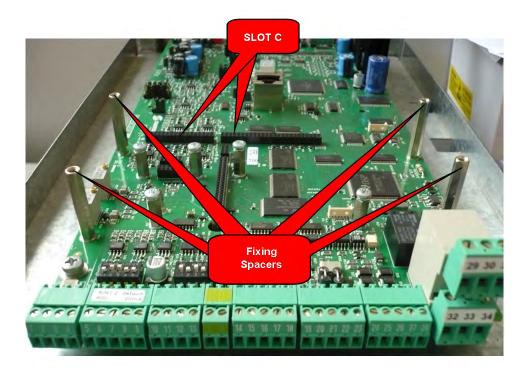


Figure 236: Location of slot C inside the terminal board cover in Sinus PENTA inverters.

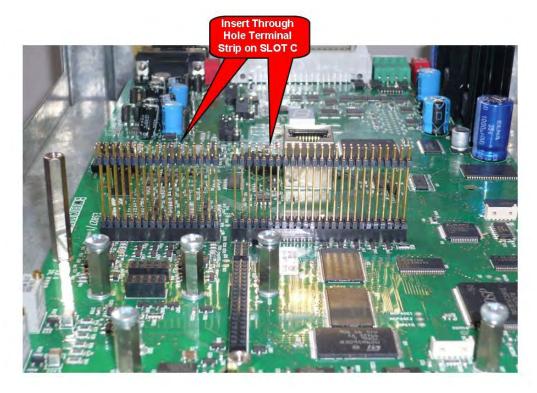


Figure 237: Terminal strips inserted into SLOT C

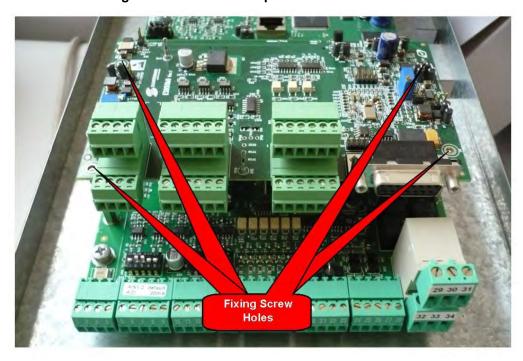


Figure 238: Fitting the ES950 board inside the inverter

- 5. Configure the supply voltage for the incremental encoder (please refer to the relevant User Manual) by setting the configuration jumper accordingly.
- 6. Power the inverter and check if the supply voltage delivered to the encoder is appropriate. Set up the parameters relating to the encoder as described in the Programming Guide.
- 7. Remove voltage from the inverter, wait until the inverter has come to a complete stop and connect the encoder cable.

SINUS PENTA

DANGER

CAUTION

NOTE

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for the complete discharge of the internal capacitors to avoid electric shock hazard.

Do not connect or disconnect signal terminals or power terminals when the inverter is powered to avoid electric shock hazard and to avoid damaging the inverter.

All fastening screws for removable parts (terminal cover, serial interface connector, cable path plates, etc.) are black, rounded-head, cross-headed screws.

Only these screws may be removed when connecting the equipment. Removing different screws or bolts will void the product guarantee.

6.23.2.1. BiSS/EnDat Encoder Connector

D-sub 15-pin female connector (two rows). The figure shows a front view of the pin layout.

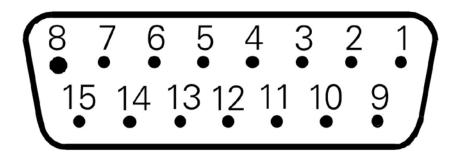
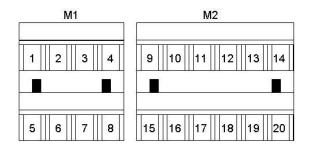



Figure 239: Pin layout on CN7 D-sub 15-pin female connector.

N.	Name	Description
1	0VE	Common for power supply and signals
2	0VE	Common for power supply and signals
3	+VEOUT_EB	Encoder power supply output
4	+VEOUT_EB	Encoder power supply output
5	DATA+	Positive data signal
6	Earth	Earth connection (PE conductor) if J7 is closed
7	n.c.	
8	TCLK+	Positive clock signal
9	reserved	
10	reserved	
11	n.c.	
12	n.c.	
13	DATA-	Negative data signal
14	n.c.	
15	TCLK-	Negative clock signal
Shell	PE	Connector shield connected to PE conductor of the inverter

6.23.2.2. Incremental Encoder and Digital Line Connectors

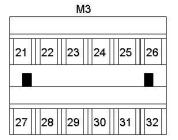


Figure 240: Input-output signal terminal board

N.	Name	Description
1	+VEOUT	Incremental encoder power supply output
2	0VE	Isolated power supply common
3	0VE	Isolated power supply common
4	0VE	Isolated power supply common
5	+5V_EXT	External power supply input for incremental encoder
6	+5V_INT	Isolated 5V power supply generated from ES950 board
7	+0V_EXT	External power supply common
8	0VE	Isolated power supply common
9	CHA	Channel A input for positive incremental encoder
10	/CHA	Channel A input for negative incremental encoder
11	CHB	Channel B input for positive incremental encoder
12	/CHB	Channel B input for negative incremental encoder
13	CHZ	Positive zero index signal
14	/CHZ	Negative zero index signal
15	CHA_U	Encoder simulation (CHA pin 9) - positive signal
16	/CHA_U	Encoder simulation (/CHA pin 10)- negative signal
17	CHB_U	Encoder simulation (CHB pin 11)- positive signal
18	/CHB_U	Encoder simulation (/CHB pin 12) - negative signal
19	CHZ_U	Encoder simulation (CHZ pin 13)- positive signal
20	/CHZ_U	Encoder simulation (/CHZ pin 14) - negative signal
21	XMDI1	Digital input
22	XMDI2	Digital input
23	XMDI3	Digital input
24	n.c.	
25	n.c.	
26	CMD	Common for digital inputs
27	XMDO1	Digital output 1
28	CMDO1	Common for digital input 1
29	XMDO2	Digital output 2
30	CMDO2	Common for digital output 2
31	XMDO3	Digital output 3
32	CMDO3	Common for digital output 3

6.23.3. ES950 Configuration and Operating Modes

The ES950 encoder interface board may power both 5V to 24V encoders and allows absolute encoders readout via two different protocols based on the same types of signals: one data line and one clock line.

1	BiSS mode	Biss Encoder (differential lines DATA+/ DATA-, TCLK+/ TCLK-)
2	EnDat mode	EnDat Encoder (differential lines DATA+/ DATA-, TCLK+/ TCLK-)

The figure shows the block diagram of the ES950 board for encoder interfacing (independently of whether using the Biss or EnDat protocol) and for interfacing with the control board. The figure also shows the acquisition logics for the digital lines from/to the field and the interface with external incremental encoders (if any).

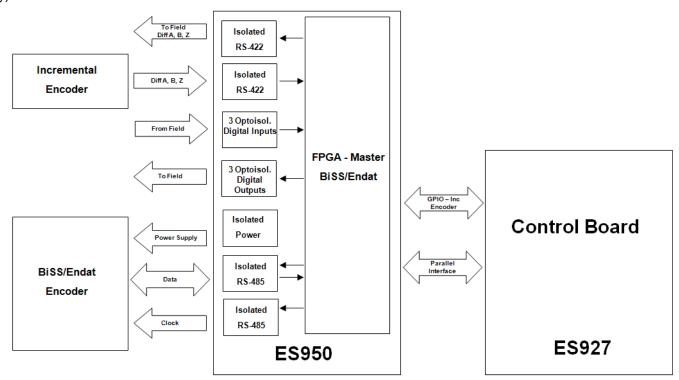


Figure 241: Block diagram for ES950 board interface

BiSS/EnDat absolute encoders are power supplied via the ES950 board according to their own specifications. Power supply is isolated in respect to the control logics. BiSS/EnDat absolute encoders interface with a Master implemented on FPGA controlling the different protocols to send absolute position information to the control board via parallel interface.

Through the FPGA Master via parallel interface, the control board may read/write additional information internally to the encoder.

The states of the opto-isolated digital inputs/outputs can be accessed via parallel interface as well, whereas the incremental lines coming from the relevant encoder, even if going through the FPGA Master, reach the control board via dedicated lines.

The ES950 board also features an error detecting mechanism for the signals sent from the incremental encoder.

Dedicated outputs make it possible to repeat the acquired encoder signals possibly applying a frequency divider by 2, 4, 8.

The protocol is chosen by programming the board (in off-line mode) accordingly and by setting proper parameters in the control board software.

6.23.3.1. BiSS Operating Mode

BiSS is an open source serial protocol developed by IC-HAUS. The configuration adopted for the Sinus PENTA system uses the point-point version B allowing reading the encoder absolute position (divided into SingleTurn and MultiTurn depending on the encoder being used) and allowing R/W of the logs internal to the encoder.

6.23.3.2. EnDat Operating Mode

EnDat is a serial protocol proprietary of Heidenhain. It is dedicated to point-to-point connections with absolute encoders (absolute position information divided by SingleTurn and MultiTurn depending on the encoder). In the Sinus Penta system, the EnDat protocol allows reading the encoder absolute position and allows R/W of the logs internal to the encoder.

6.23.3.3. Configuring and Adjusting the Encoder Supply Voltage

The ES950 board may power encoders having different power supply voltage ratings. A selection jumper and a power supply voltage regulation trimmer are available as shown in Figure 242. The jumpers and the trimmer are located on the top side of the board. The possible configurations are given in the table below.

	No VE OUT			
	24V	12V	5V	
J1	X	OFF	ON	Х
J2	2-3	1-2	1-2	X
J3	ON	ON	ON	OFF

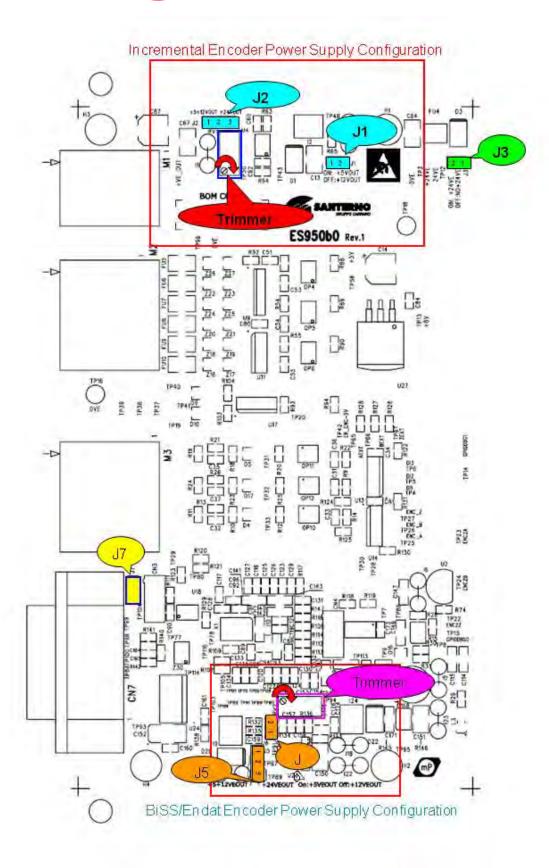


Figure 242: Jumpers and trimmer for power supply configuration

	BiSS/EnDat encoder supply: VE OUT EB			No VE OUT EB	
	24V	12V	5V	-	
J6	X	OFF	ON	X	
J5	2-3	1-2	1-2	X	
J3	ON	ON	ON	OFF	

In 24V mode, the output voltage is fixed and cannot be adjusted. In 5 and 12V mode, the output voltage can be fine-tuned: in 5V mode, the no-load voltage may range from 4.5 to 7V by adjusting each individual trimmer accordingly; in 12V mode, the no-load voltage may range from 10.5 to 17V.

Turn the trimmer clockwise to increase output voltage.

This allows meeting the Biss/EnDat encoder requirements by taking account of voltage drops in cables and connector contacts.

- Encoder EnDat (Heidenhain): power supply typically ranges from [3.6÷14]V, [3.6÷5.25]V, [5±5%]V depending on the type of encoder being used. The latest standard, EnDat 2.2, covers [3.6÷14]V.
- Encoder BiSS: [7÷30]V, [10÷30]V, [5±10%]V

Power supply voltage is to be measured at the encoder supply terminals, thus taking account of cable voltage drops, particularly if a long cable is used.

CAUTION

Supplying the encoder with inadequate voltage may damage the component. Before connecting the cable and after configuring the ES950 board, always use a tester to check the voltage supplied by the board itself.

NOTE

The encoder power supply circuit is provided with an electronic current limiter and a resettable fuse. Should a short-circuit occur in the supply output, shut down the inverter and wait a few minutes to give the resettable fuse time to reset.

6.23.4. Connecting the Encoder Cable

State-of-the-art connections are imperative. Use shielded cables and correctly connect cable shielding. Connect the external shielding directly to the connector plug (ES950 side) and to the connector or to a pin (if any) connected to the encoder frame (motor side). The CN7 connector plug is internally grounded.

If the cable has multiple shieldings, connect the internal shieldings to each other and connect them to the common 0V power supply and signals in ES950 (pin 1 or 2 in 15-pin CN7 connector). Do not connect the internal and external shieldings to each other, either along the cable or to the encoder.

The recommended connection diagram consists in a multipolar, dual shielded cable. The inner shield shall be connected to the connected to ES950 board, while the outer shield shall be connected to the encoder frame, usually in common with the motor frame. If the inner shield is not connected to the encoder frame, this can be connected to the inner braid.

The motor must always be earthed as instructed with a dedicated conductor attached directly to the inverter earthing point and routed parallel to the motor power supply cables.

It is not advisable to route the Encoder cable parallel to the motor power cables. It is preferable to use a dedicated signal cable conduit.

The welding jumper J7 enables grounding pin 6 in CN7 connector:

17	ON	Pin 6 connected to PE conductor through ES950
37	OFF	Pin 6 not connected to PE conductor through ES950

The figure below illustrates the recommended connection method.

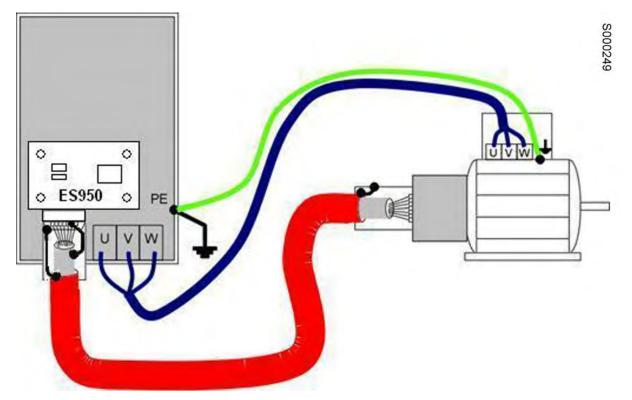


Figure 243: Recommended dual shielded connection for encoder cable

NOTE

CAUTION

The encoder supply output and the encoder signal common are isolated in respect to the common of the analog signals fitted in the inverter terminal board (CMA). Do not connect any conductors in common between the encoder signals and the signals in the inverter terminal board. This prevents isolation from being adversely affected.

The connector of ES950 board shall be connected exclusively to the encoder using one single cable.

Correctly fasten the cable and the connectors both on the encoder side and on ES950 board side. The disconnection of one cable or even a single conductor can lead to inverter malfunction and may cause the motor to run out of control.

6.23.4.1. Environmental Requirements

Operating temperatures	-10 to +55°C ambient temperature (contact Elettronica Santerno for higher ambient temperatures)			
Relative humidity	5 to 95% (non-condensing)			
Max. allowable operating	2000 m a.s.l. For installation above 2000 m and up to 4000 m,			
altitude	please contact Elettronica Santerno.			

6.23.4.2. Electrical Ratings

Decisive voltage class A according to EN 61800-5-1

Encoder supply output		Value			
		Тур	Max	Unit	
Encoder output current, +24V configuration			150	mA	
Encoder output current, +12V configuration			200	mA	
Encoder output current, +5V configuration			500	mA	
24VE Short-circuit protection level			300	mA	
Encoder supply voltage adjusting range in 5V mode (no-load voltage)	4.5	5.3	7	V	
Encoder supply voltage adjusting range in 12V mode (no-load voltage)	10.5	12.0	17	V	

Static characteristics of the input signals	Value				
Static characteristics of the Input signals		Тур	Max	Unit	
Type of input signals DATA+, DATA-, TCLK+, TCLK-	Standard TIA/EIA-485			-485	
Differential input voltage range			12/–7	V	
Input common mode voltage range			12/–7	V	
Input impedance (termination)	Input impedance (termination) 120			ohm	
Type of input signals CHA, CHB, CHZ	Standard TIA/EIA-422		-422		
Differential input voltage range			±7	V	
Input common mode voltage range			±7	V	
Input impedance	150		ohm		
Type of input signals MDI1, MDI2, MDI3 in respect to COM_MDI	Digital signals from the field			ne field	
Input voltage range	15	24	30	V	

Max. absolute values		Value			
		Тур	Max	Unit	
Maximum allowable common mode voltage amplitude causing no damage on inputs DATA+, DATA-, TCLK+, TCLK-	- 7		+12	٧	
Maximum allowable differential voltage amplitude on channels CHA, CHB, CHZ	-25		+25	V	

CAUTION

Exceeding the maximum differential input or common mode voltages will result in irreparable damage to the apparatus.

Dynamic characteristics of the input signals	Value
Max. frequency of Biss protocol digital signals	10 MHz
Max. frequency of EnDat protocol digital signals	8 MHz

CAUTION

Exceeding the input signal frequency limits will result in a wrong measurement of the encoder position and speed. Depending on the control method selected for the inverter, it may also cause the motor to run out of control.

Static characteristics of the digital outputs and the encoder outputs		Value			
		Тур	Max	Unit	
Type of input signals CHA_U, CHB_U, CHZ_U	Standard TIA/EIA-422			422	
High logic level voltage	2.5			V	
Low logic level voltage			0.5	V	
Limited common mode voltage	±5.6		V		
Maximum current		50			
Type of input signals MDOC-E1, MDOC-E2, MDOC-E3	"Open Collector"		r"		
Voltage applicable to MDOC with no static absorption in "open" configuration			5	V	
Maximum current that can be absorbed in "closed" configuration			50	mA	

CAUTION

Exceeding the maximum differential input or common mode voltages will result in irreparable damage to the apparatus.

6.24. Encoder Board Hiperface ES966 (Slot C)

The encoder board Hiperface ES966 enables interfacing absolute encoders with digital serial outputs based on Hiperface protocol that can be used as speed feedback and/or position feedback on the Sinus Penta drives.

NOTE

Please refer to the Programming Guide and to the Guide to the Synchronous Motor Application to check the available control algorithms.

The absolute measurement allows getting the exact position of the motor when the system is started; in addition, the current delivered at start is such as to ensure the maximum torque, with no need to perform complex alignment adjustments at start.

The ES966 encoder board features additional functions, such as the acquisition of differential incremental signals from external encoders and the control of opto-isolated digital inputs and outputs.

It is possible to use the ES966 encoder board for Sin/Cos 5ch absolute encoders or Sin/Cos 3ch incremental encoders.

ES966 board also features additional functions:

- Acquisition of differential incremental signals from external encoders.
- Acquisition/implementation of opto-isolated digital links from/to the field.
- Acquisition of a temperature sensor.

The board features are given below:

- Acquisition of absolute position of Hiperface Encoder (RS485 and Sin/Cos) and variable resolution depending on the encoder model.
- Acquisition of differential, incremental encoder signals coming from external sources and compatible with opto-isolated, Line Driver (TIA/EIA-422) encoders.
- Galvanic isolation on all lines from/to external sources.
- Output for Hiperface encoder power supply configurable via hardware at 5V, 12V, 24V with fine-tuning option, isolated from the control logic.
- Output for external incremental encoder power supply configurable at 5V, 12V, 24V with fine-tuning option, isolated from the control logics.
- Possibility of re-addressing the acquired signals (even processed) from incremental encoders to external sources over Line Driver (TIA/EIA-422) standard.
- Acquisition of 3 opto-isolated digital lines coming from the field.
- Implementation of 3 opto-isolated digital lines to the field.
- Acquisition of motor temperature sensor, type PTC, KTY84 or PT100, selectable via DIP-switch.

The features related to the incremental encoder inputs are as follows:

- 77KHz (1024imp @ 4500rpm): max. input frequency with digital filter enabled.
- 155KHz (1024imp @ 9000rpm): max. input frequency with digital filter disabled.
- Input with Differential or Single-Ended signals.
- Error detection over input signals.

Figure 37 shows the ES966 board including the description of the terminal boards and the components to be used for the board setting:

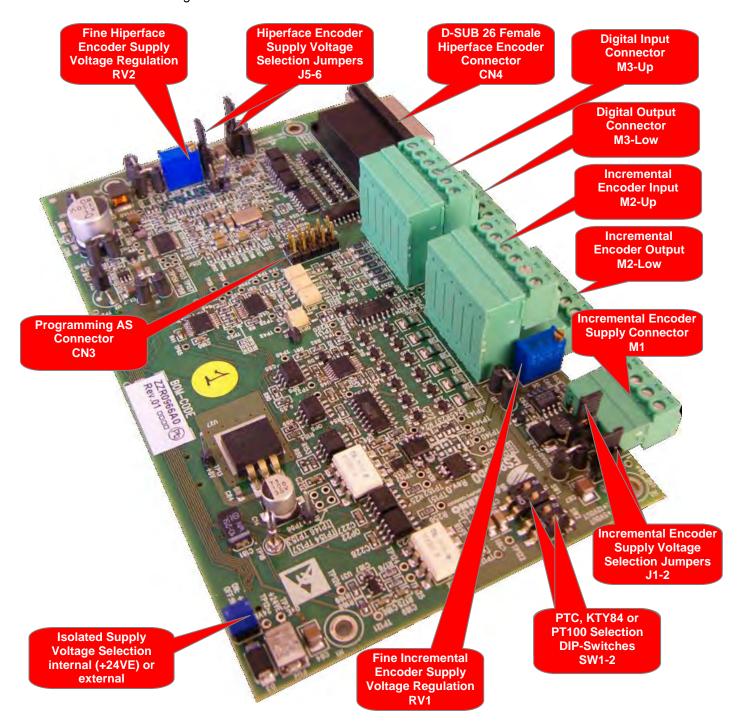


Figure 244: ES966 Hiperface Encoder Board

6.24.1. Part Number

Description	Part Number
ES966 Encoder Hiperface	ZZ0101895

6.24.2. Installing the ES966 Board on the Inverter (SLOT C)

- 1. Remove voltage from the inverter and wait at least 20 minutes.
- 2. The electronic components of the inverter and the board are sensitive to electrostatic discharges. Take any safety measure before operating inside the inverter and before handling the board. The board should be installed in a workstation equipped with proper grounding and provided with an antistatic surface. If this is not possible, the installer must wear a ground bracelet properly connected to the PE conductor.

- 3. Remove the protective cover of the inverter terminal board by unscrewing the two screws on the front lower part of the cover. Slot C where the ES966 board will be installed is now accessible, as shown in the figure below.
- 4. Insert the ES966 board into Slot C. Carefully align the contact pins with the two connectors in the slot (CN7A and CN7B). See Figure 245, Figure 246 and following figures. If the board is properly installed, the four fixing holes are aligned with the housing of the relevant fixing spacers screws. Check if alignment is correct, then fasten the four fixing screws as show in Figure 247.

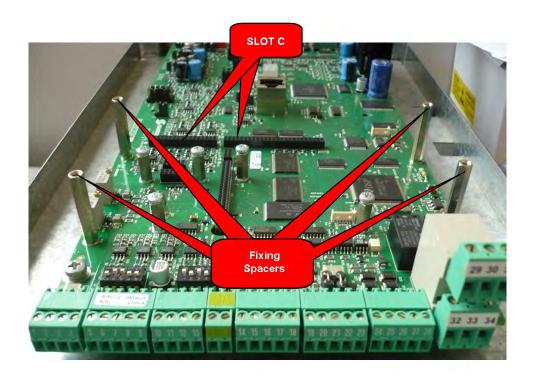


Figure 245: Location of slot C inside the PENTA terminal board cover

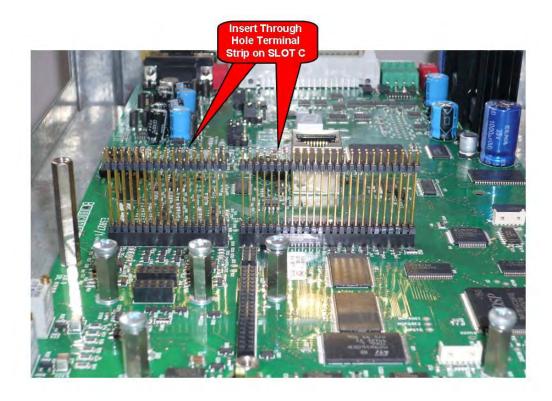


Figure 246: Inserting terminal strips to slot C

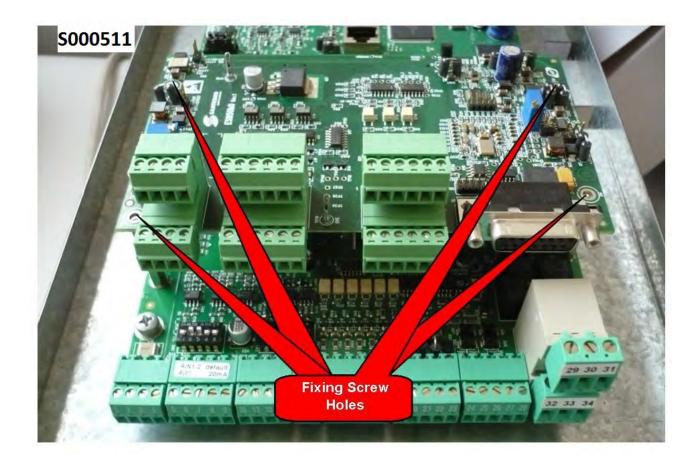


Figure 247: Fastening the ES966 inside the Penta drive

- 5. Configure the supply voltage for the incremental encoder (please refer to the relevant User Manual) by setting the configuration jumper accordingly.
- 6. Power the inverter and check if the supply voltage delivered to the encoder is appropriate. Set up the parameters relating to the encoder as described in the Programming Guide.
- 7. Remove voltage from the inverter, wait until the inverter has come to a complete stop and connect the encoder cable.

DANGER

Before gaining access to the components inside the inverter, remove voltage from the inverter and wait at least 20 minutes. Wait for the complete discharge of the internal capacitors to avoid electric shock hazard.

CAUTION

Do not connect or disconnect signal terminals or power terminals when the inverter is powered to avoid electric shock hazard and to avoid damaging the inverter.

NOTE

All fastening screws for removable parts (terminal cover, serial interface connector, cable path plates, etc.) are black, rounded-head, cross-headed screws.

Only these screws may be removed when connecting the equipment. Removing different screws or bolts will void the product guarantee.

6.24.3. HIPERFACE® Encoder Connector

High-density female D-sub 26 connector (three rows): Reference Designator CN4. Figure 248 shows the location of the pins from the front side.

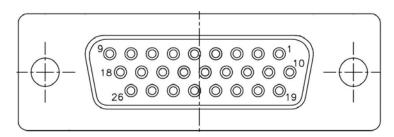


Figure 248: Pin layout on HD female D-sub 26 connector

The pin layout of High-density female D-sub 26 connector is given in the table below:

N.	Name	Description
1	n.c.	
2	n.c.	
3	DATA-	Inverted RS485 data signal
4	DATA+	Positive RS485 data signal
5	CHB_5-	Incremental encoder, inverted channel B (fast signal B for 5 CH encoder)
6	CHB_5+	Incremental encoder, positive channel B (fast signal B for 5 CH encoder)
7	+VEOUT_EB	Encoder supply output
8	COS+	Hiperface encoder, positive cosine (D+ slow signal for 5 CH encoder)
9	COS-	Hiperface encoder, inverted cosine (D+ slow signal for 5 CH encoder)
10	n.c.	
11	n.c.	
12	n.c.	
13	n.c.	
14	CHA_5+	Incremental encoder, positive channel A (A fast signal for 5 CH encoder)
15	CHA_5-	Incremental encoder, inverted channel A (A fast signal for 5 CH encoder)
16	0VE	Power supply and signal common
17	SIN+	Hiperface encoder, positive sine (C+ slow signal for 5 CH encoder)
18	SIN-	Hiperface encoder, inverted sine (C+ slow signal for 5 CH encoder)
19	Earth	Earth connector (PE conductor) if J7 closed
20	n.c.	
21	n.c.	
22	CHZ_5+	Incremental encoder positive index (fast signal Z for 5 CH encoder)
23	CHZ_5-	Inverted index incremental encoder (fast signal Z for 5 CH encoder)
24	0VE	Power supply and signal common
25	PTC+	Motor temperature sensor, positive signal
26	PTC-	Motor temperature sensor, negative signal
Shell	PE	Connector shield connected to PE conductor of the inverter

Table 2: Pin layout for D-sub 26 connector

6.24.4. Incremental Encoder Connectors and Digital Lines

Disconnection terminals, 3.81 mm pitch.

Figure 249 shows the pin layout of the terminals from the cable entry front side.

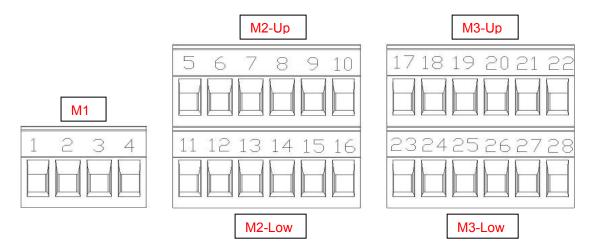


Figure 249: Input-output signal terminals

The loose terminals, p. 3.81mm, are given in the table below:

N.	Name	Description
1	+VEOUT	Incremental encoder power supply output
2	+VEOUT	Incremental encoder power supply output
3	0VE	Isolated power supply output
4	0VE	Isolated power supply output
5	CHA	Incremental encoder positive channel A input
6	/CHA	Incremental encoder inverted channel A input
7	CHB	Incremental encoder inverted channel B input
8	/CHB	Incremental encoder inverted channel B input
9	CHZ	Positive mark reference signal
10	/CHZ	Inverted mark reference signal
10	I/CHZ	inverted mark reference signal
11	CHA_U	Incremental encoder, positive channel A reproduction output
12	/CHA_U	Incremental encoder, inverted channel A reproduction output
13	CHB_U	Incremental encoder, positive channel B reproduction output
14	/CHB_U	Incremental encoder, inverted channel B reproduction output
15	CHZ_U	Positive mark reference signal reproduction output
16	/CHZ_U	Inverted mark reference signal reproduction output
17	MDI1	Digital input from the field
18	MDI2	Digital input from the field
19	MDI3	Digital input from the field
20	n.c.	
21	n.c.	
00	LOOM MDI	Digital input agrees on from the field
22	COM_MDI	Digital input common from the field
23	MDOC1	Digital output 1
24	MDOE1	Digital output 1 common
25	MDOC2	Digital output 2
26	MDOE2	Digital output 2 common
27	MDOC3	Digital output 3
28	MDOE3	Digital output 3 common

Table 3: IDs and description of the terminal boards

6.24.5. Operating Mode and Configuration of Hiperface Encoder Board

The ES966 encoder board voltage range is from 5 to 24 V and allows the acquisition of Hiperface absolute encoders. It also acquires absolute Sin/Cos 5ch encoders or Sin/Cos 3ch encoders.

Figure 250 shows the operating mode of the ES966 board in terms of interfacing to the encoder device and the control board. The acquisition logic of digital lines to/from the field and the interfacing with external incremental encoders.

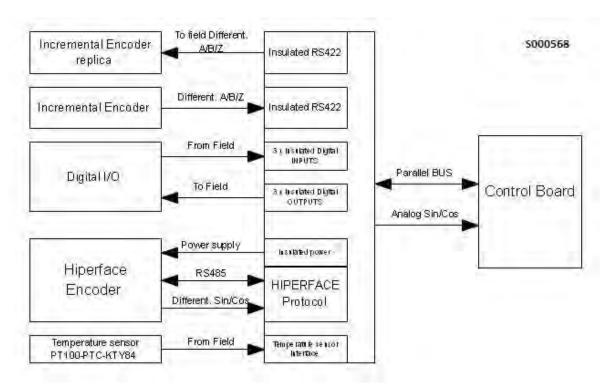


Figure 250: Block diagram of ES966 interface board

The Hiperface absolute encoders are supplied by the ES966 control board (isolated in respect to the control logics) and are interfaced with a counterpart implemented onto FPGA controlling the serial protocol and the sin/cos signals decoding. The control board may read/write additional information internally to the encoder by way of the parallel interface through the FPGA.

The states of the opto-isolated digital outputs/inputs may be accessed via parallel interface as well, while the incremental lines coming from the relative encoder, although passing through the FPGA, reach the control board by way of dedicated lines.

The board also implements a mechanism detecting signal errors from the signals coming from the incremental encoder.

Dedicated outputs may re-send the encoder channels externally acquired, also processed by frequency divider (factor 2, 4 and 8).

The protocol is selected by downloading a special firmware to the board FPGA at an off line programming level and by setting up dedicated parameters in the control board software.

The implemented protocols are detailed in the sections below.

6.24.6. HIPERFACE® Operating Mode

Hiperface is a protocol developed by Sick-Stegmann for the transmission of information on the encoder position for motor control functionality. This protocol extends the ordinary sine/cosine operation through a slow RS485 interface.

During initialization, the slow serial link is used to detect the encoder absolute position; the sensor is then utilized as an ordinary sine/cosine sensor with two differential tracks 1Vpp.

The Hiperface systems offers different benefits, such as redundancy of the position information sent via serial link and unencrypted signal and the utilization of relatively slow signal bands. This makes the Hiperface encoder a robust encoder suitable as a position feedback for brushless drives.

The serial protocol is a request/response one, and each packet includes a checksum allowing checking the integrity of the information contained. The RS485 comms baudrate is 9600bps by default.

When started, the drive sends a READ_POSITION command to the encoder: if no response is detected or a failure in data consistency is found, the drive triggers an encoder error alarm, otherwise, if the motor position is correctly detected, the drive switches to sine/cosine control starting from the initial position read by the RS485 protocol.

The sine/cosine control consists in decoding the position starting from the arctangent of the angle represented by the sine and cosine signals. In order to ensure the correct operation of the sensor even at relatively high speed, the sine/cosine information are controlled at a digital level as well by way of a quadrature decoder.

The maximum allowable bandwith controlled by the ES966 is 100 kHz, corresponding to 3000 rpm of an encoder at 2048 sinusoids/rev.

6.24.7. Configuring and Adjusting the Encoder Supply Voltage

The ES966 board may supply encoders with different voltage ratings.

For the incremental encoder, the voltage selection jumpers are J1-2-3 and the adjusting trimmer is RV1. For encoder Hiperface, the voltage selection jumpers are J3-5-6 and the adjusting trimmer is RV2.

The possible configurations are given in the tables below:

	No VE OUT			
	24V	12V	5V	
J1	X	OFF	ON	X
J2	2-3	1-2	1-2	X
J3	ON	ON	ON	OFF

Table 4: Configuration of incremental encoder power supply

	Hiperface encoder power supply: VE OUT EB					
	24V	12V	5V			
J6	X	OFF	ON	X		
J5	2-3	1-2	1-2	X		
J3	ON	ON	ON	OFF		

Table 5: Configuration of Hiperface encoder power supply

In 24V configuration, the output voltage is fixed and cannot be adjusted, while in 5V and 12V configuration, the output voltage may be fine-tuned: in 5V configuration, each trimmer allows adjusting the no-load voltage ranging from 4.5 to 7V; in 12V configuration, the no-load range is from 10.5 to 17V.

The voltage increase may be obtained by adjusting the trimmer clockwise.

In this way, the Hiperface encoders requirements may be met, also considering the voltage drops on the cable and the connector contacts; the typical power supply range is 7 to 12V.

The supply voltage is to be measured directly on the encoder power supply terminals, also considering the voltage drops in the connection cable, especially if this is rather long.

CAUTION

NOTE

Inadequate voltage ratings for the encoder power supply may cause the encoder malfunction. Use a tester to check the voltage supplied by the ES966 board once it has been configured and before connecting the power supply cable.

The power supply circuit of the encoder envisages an electronic current limiter and a resetting fuse. If accidental short-circuits occur on the power supply output, power off the drive and wait a few minutes so that the fuse may be reset.

The jumpers and trimmers are on the top side of the board, see Figure 251.

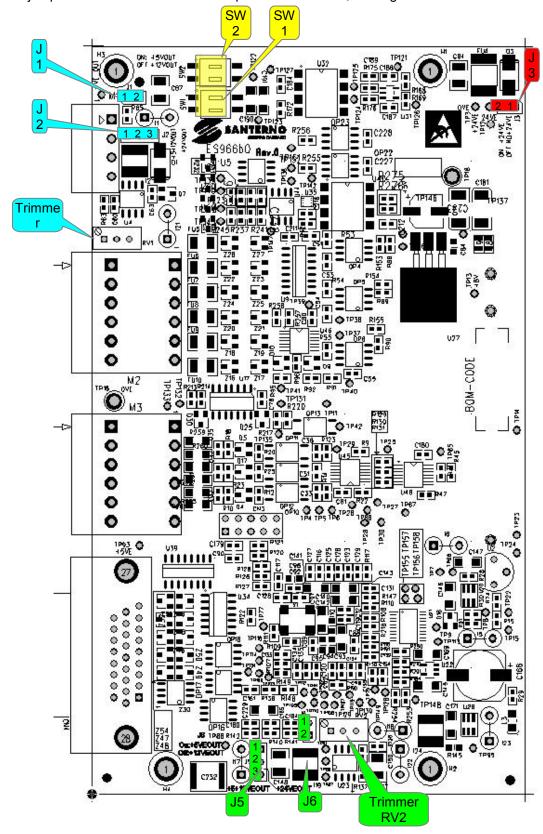


Figure 251: Location of the jumpers, trimmers and DIP-switches of ES966

6.24.8. Temperature Sensor Configuration

The ES966 encoder board may acquire the most popular temperature sensors in the electric motors. Two DIP-switches (SW1 and SW2 in Figure 251) are available for the selection of the type of sensor being used.

NOTE

For a correct acquisition of the sensor, set the DIP-switches and the relative parameters accordingly.

See the Programming Guide.

The DIP-switches are on the top side of the board. See Figure 251.

The possible configurations are given in Table 6:

	PTC	KTY84	PT100
SW1.1	OFF	ON	OFF
SW1.2	OFF	ON	OFF
SW2.1	OFF	OFF	ON
SW2.2	OFF	OFF	ON

Table 6: DIP-switch configuration for the temperature sensor

6.24.9. Connecting the Encoder Cable

It is necessary to carefully connect the drive to the encoder, even if the bandwidths of the Hiperface encoders are typically low (particularly the sine/cosine signals).

Typically, shielded CAT 5 cables with twisted pair signal lines are used with capacities lower than 100 pF/m and length lower than 100 m.

It is recommended that double-shielded cables be used by connecting the internal shield to the case of CN4 type D-sub 26 connected to the ES966 board (pin 19) and the external shield to the encoder case, typically in common with the motor case. If the encoder is provided with an external shield that is not connected to the case, the external shield may be connected to the internal one.

In compliance with the applicable standards, the motor must always be earthed with a Y/G safety conductor directly to the earthing point of the drive. In order to meet the EMC requirements related to emissions and immunity for the whole equipment, it is advisable to use a shielded cable for the connection between the drive and the motor. The cable shield is to be connected to the earthing point of the drive. If no shielded cable is used, the Y/G safety conductor shall run in parallel to the motor power supply cables.

Do not run the encoder cable in parallel to the motor power supply cables and close to other disturbance sources (relays, motors, drives, solenoids): in particular, a minimum clearance exceeding 100 mm must be observed. If switching feeder inductors are located in proximity to the motor cable, the minimum allowable clearance must exceed 200 mm. Where possible, use a metal conductor dedicated to the signal cables and connected to earth.

Failure to observe the instructions above may lead to wrong reception of the position information sent from the encoder and encoder malfunction.

Figure 252 shows the recommended connection.

- Drive/motor connection shielded cable (blue), with the shield connected to the drive earthing point (shield orange in colour).
- Drive/motor connection double shielded cable (red in colour): internal shield connected to the case of CN4 connector, D-sub 26 connector on the ES966 board (pin 19); external shield to the encoder case, typically in common with the motor case.

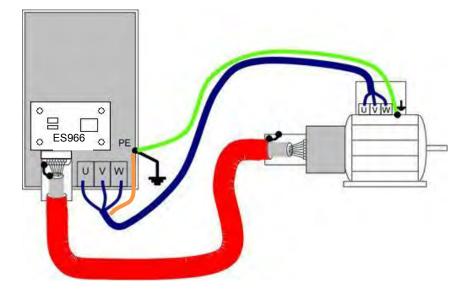


Figure 252: Connection method recommended for the double-shield encoder cable

The welded jumper J7 (bottom side in the ES966 close to CN4 connector) allows connecting the internal and external shielding of the drive/encoder cable:

- Internal shield of the drive/encoder cable connected to pin 19 in connector CN4.
- External shield of the drive/encoder cable connected to the encoder case, typically in common with the motor case.

		Connection of the internal shielding of the drive/encoder cable to PE conductor via ES966
7	OFF	NO Connection of the internal shielding of the drive/encoder cable to PE conductor via ES966

Table 7: Configuration of jumper J7

If J7 is OFF (default condition) the external shielding is connected to earth via the encoder case and the motor case, while the internal shield is connected to the case of the D-sub 26 connector but is not connected to the conductor by way of the ES966 board.

NOTE

The encoder supply output and the encoder signal common are isolated in respect to the common of the analog signals fitted in the inverter terminal board (CMA). Do not connect any conductors in common between the encoder signals and the signals in the inverter terminal board. This prevents isolation from being adversely affected.

CAUTION

The connector of the ES966 board shall be connected exclusively to the encoder using one single cable.

Correctly fasten the cable and the connectors both on the encoder side and on

Correctly fasten the cable and the connectors both on the encoder side and on the ES966 board side. The disconnection of one cable or even a single conductor can lead to inverter malfunction and may cause the motor to run out of control.

6.24.10. Environmental Requirements

Operating temperature	-10 to +55°C ambient temperature (contact Elettronica Santerno for		
	higher ambient temperatures)		
Relative humidity	5 to 95% (non-condensing)		
Max. operating altitude	2000 m a.s.l. For installation above 2000 m and up to 4000 m, please		
	contact Elettronica Santerno.		

6.24.11. Electrical Specifications

Decisive voltage class A according to EN 61800-5-1

Engador nover quante output		Value			
Encoder power supply output -		Тур	Max	Unit	
Encoder power supply output current, +24V configuration			150	mA	
Encoder power supply output current, +12V configuration			200	mA	
Encoder power supply output current, +5V configuration			500	mA	
Short-circuit safety protection device trip level, 24VE			300	mA	
Adjusting range of encoder power supply, 5V mode (no-load mode)	4.5	5.3	7	V	
Adjusting range of encoder power supply, 12V mode (no-load mode)	10.5	12.0	17	V	

Relay Output Static Specs		Value			
		Тур	Max	Unit	
Type of input signals, DATA+, DATA–	5	Standard	TIA/EIA	-485	
Differential input voltage range			12/–7	V	
Input common mode voltage range			12/–7	V	
Input impedance (termination)		120		Ohm	
Type of input signals, SIN+/SIN-/COS+/COS-	Sincos 1Vpp				
Differential input voltage range	0,9		1,1	V	
Input common mode voltage range	1,5	2,5	3,5	V	
Input impedance (termination)	120 Ohm		Ohm		
Type of input signals, CHA, CHB, CHZ	Standard TIA/EIA-422		-422		
Differential input voltage range			±7	V	
Input common mode voltage range			±7	V	
Input impedance (termination)		150		Ohm	
Type of input signals, MDI1, MDI2, MDI3 in respect to COM_MDI	Digital from the field		eld		
Input voltage range	10		34	V	
Type of PTC input signals		Passi	ve senso	r	
Differential input voltage range			1.7	V	

		Value			
Maximum absolute values		Тур	Max	Unit	
Maximum allowable common mode failure-free voltage amplitude for inputs DATA+, DATA–	-7		+12	V	
Maximum allowable common mode and differential mode voltage amplitude for inputs CHA, CHB, CHZ, CHA_5, CHB_5, CHZ_5,	-25		+25	>	
Common mode voltage, PTC inputs	0		4	V	
Common mode voltage, SIN/COS inputs	0		32	>	
Incremental encoder output voltage	0		5	V	
Incremental encoder output current (resettable fuse trip threshold)	0		500	mA	

CAUTION

Exceeding the maximum differential input or common mode voltages will result in irreparable damage to the apparatus.

Dynamic characteristics of signal inputs	Value
Maximum frequency of Sin/Cos Hiperface signals	100 kHz

CAUTION

Exceeding the input signal frequency limits will result in a wrong measurement of the encoder position and speed. Depending on the control method selected for the inverter, it may also cause the motor to run out of control.

Static characteristics of the digital outputs and the angular outputs	Value			
Static characteristics of the digital outputs and the encoder outputs		Тур	Max	Unit
Type of input signals, CHA_U, CHB_U, CHZ_U	Standard TIA/EIA-422			
High logic level voltage	2.5			V
Low logic level voltage			0.5	V
Limited common mode voltage	±5.6 V		V	
Maximum current	50 mA		mA	
Type of output signals MDOC-E1, MDOC-E2, MDOC-E3	"Open Collector" switch			
Voltage applicable to MDOC with no static absorption in "open" configuration			5	V
Maximum current that can be absorbed in "closed" configuration			50	mA

CAUTION

Exceeding the input signal frequency limits will result in a wrong measurement of the encoder position and speed. Depending on the control method selected for the inverter, it may also cause the motor to run out of control.

7. NORMATIVE REFERENCES

The Sinus Penta drives comply with the following directives:

- Electromagnetic Compatibility Directive 2004/108/CE
- Low Voltage Directive 2006/95/CE

7.1. Electromagnetic Compatibility Directive

In most systems, the processing control also requires additional devices, such as computers, captors, and so on, that are usually installed one next to the other, thus causing disturbance:

- Low frequency harmonics.
- High frequency electromagnetic interference (EMI)

HIGH FREQUENCY INTERFERENCE

High frequency interference is disturbance or radiated interference with >9kHz frequency. Critical values range from 150kHz to 1000MHz.

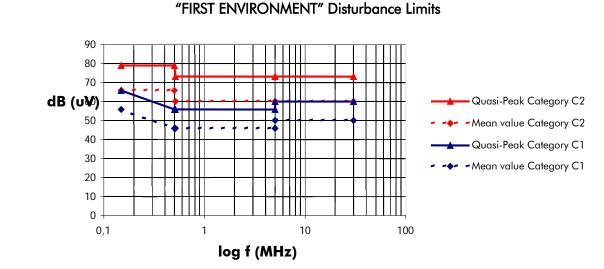
Interference is often caused by switching to be found in any device, i.e. switching power supply units and drive output modules. High frequency disturbance may interfere with the correct operation of the other devices. High frequency noise produced by a device may cause malfunctions in measurement systems and communication systems, so that radio receivers only receive electrical noise. This may cause unexpected faults.

Immunity and emissions may be concerned (EN 61800-3, ed. 2).

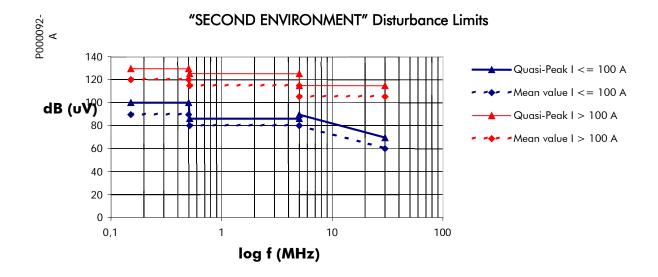
EN 61800-3 defines the immunity levels and the emission levels required for the devices designed to operate in different environments. Drives manufactured by ELETTRONICA SANTERNO are designed to operate under the most different conditions, so they all ensure high immunity against RFI and high reliability in any environment.

The table below defines PDS (Power Drive Systems) of EN 61800-3 ed.2.

FIRST ENVIRONMENT	Environment including domestic devices and industrial devices which are connected directly to a low-voltage mains (with no intermediate transformer) for domestic usage.
SECOND ENVIRONMENT	Environment including industrial connections different from "First Environment" connections.
PDS of Category C1	PDS with rated voltage lower than 1000 V to be used in the First Environment.
PDS of Category C2	PDS with rated voltage lower than 1000 V; if used in the First Environment, they are intended to be installed and commissioned by professional users only.
PDS of Category C3	PDS with rated voltage lower than 1000 V to be used in the Second Environment.
PDS of Category C4	PDS with rated voltage equal to or higher than 1000 V or with a current equal to or higher than 400A to be used in complex systems installed in the Second Environment.


INSTALLATION GUIDE SINUS PENTA

Emission Limits


P000091-A

The standards in force also define the allowable emission level for different environments. The diagrams below pertain to the emission limits allowed by EN 61800-3 ed.2.

A1 = EN 61800-3 issue 2 FIRST ENVIROMENT, Category C2, EN55011 gr.1 cl. A, EN50081-2, EN61800-3/A11.

B = EN 61800-3 issue 2 FIRST ENVIROMENT, Category C1, EN55011 gr.1 cl. B, EN50081-1,-2, EN61800-3/A11.

A2 = EN 61800-3 issue 2 SECOND ENVIRONMENT Category C3, EN55011 gr.2 cl. A, EN61800-3/A11.

Figure 253: Conducted emission limits

SINUS PENTA

The inverters manufactured by ELETTRONICA SANTERNO allow choosing among four levels:

- **B** suppression of the emissions for power drive systems installed in the FIRST ENVIRONMENT, Category C1.
- A1 suppression of the emissions for power drive systems installed in the FIRST ENVIRONMENT, Category C2.
- A2 suppression of the emissions for power drive systems installed in the SECOND ENVIRONMENT, Category C3, for currents <400A, Category C4 for currents ≥400A;
- I no suppression of the emissions for users who use power drive systems in a non-vulnerable environment and who directly provide for the suppression of the emissions;

Additional external EMC filters may be installed to bring emissions of devices of level I or A2 or A1 to level B.

Immunity levels

Electromagnetic disturbance is caused by harmonics, semiconductor switching, voltage variation-fluctuation-dissymmetry, mains failures and frequency variations; electrical equipment must be immune from electromagnetic disturbance.

The following tests are required by EN 61800-3 Ed.2:

	- Immunity: EN 61000-4-2/IEC 61000-4-2 Electromagnetic Compatibility (EMC). Part 4: Testing and Measurement Techniques. Section 2: Electrostatic Discharge Immunity Test. Basic EMC Publication. EN 61000-4-3/IEC 61000-4-3 Electromagnetic Compatibility (EMC). Part 4: Testing and Measurement Techniques.
	Section 3: Radiated, Radio-frequency, Electromagnetic Field Immunity Test.
EN 61800-3 Ed.2	EN 61000-4-4/IEC 61000-4-4 Electromagnetic Compatibility (EMC). Part 4: Testing and Measurement Techniques. Section 4: Electrical Fast Transient/Burst Immunity Test. Basic EMC Publication.
	EN 61000-4-5/IEC 61000-4-5 Electromagnetic Compatibility (EMC). Part 4: Testing and Measurement Techniques. Section 5: Surge Immunity Test.
	EN 61000-4-6/IEC 61000-4-6 Electromagnetic Compatibility (EMC). Part 4: Testing and Measurement Techniques. Section 6: Immunity from Radiofrequency Fields Induced Disturbance.

<u>ELETTRONICA SANTERNO certifies all its products in compliance with immunity standards in force. All classes are provided with CE Declaration of European Conformity according to Electromagnetic Compatibility Directive 2004/108/CE (please visit santerno.com).</u>

CAUTION

Products with ID "I" in column 7 in the nameplate (Delivery Check section):

These devices are not provided with EMC filters. They can produce radio interference in domestic environments; additional measures should be taken to suppress radio interference.

CAUTION

Products with ID "A2" in column 7 in the nameplate (Delivery Check section); the following regulation is provided:

These are category C3 devices (for currents <400A) or category C4 (for currents ≥400A) according to EN 61800-3. They can produce radio interference in domestic environments; additional measures should be taken to suppress radio interference.

CAUTION

Products with ID "A1" in column 7 in the nameplate (Delivery Check section): These are category C3 devices according to EN 61800-3. They can produce radio interference in domestic environments; additional measures should be taken to suppress radio interference.

CAUTION

EMC filters are designed for earthed networks (TN or TT). Filters for floating networks (IT) can be supplied on demand.

7.1.1. Radiofrequency Disturbance

Radiofrequency disturbance (RFI) may occur where the inverter is installed.

Electromagnetic emissions produced by the electrical components installed inside a cabinet may occur as conduction, radiation, inductive coupling or capacitive coupling.

Emissions disturbance can be the following:

- a) Radiated interference from electrical components or power wiring cables inside the cabinet;
- b) Disturbance and radiated interference from outgoing cables (power supply unit cables, motor cables, signal cables).

The figure shows how disturbance takes place:

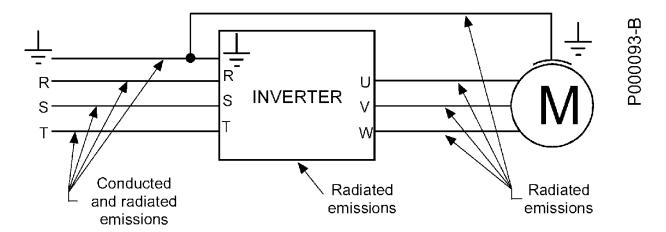


Figure 254: Disturbance sources in a power drive system equipped with an inverter

The measures to be taken to suppress disturbance include: grounding enhancement; changes made to the cabinet structure; installation of mains filters on the line and installation of output toroid filters on the motor cables; optimization of the wiring and cable shielding.

Always restrict as much as possible the area exposed to disturbance, so as to limit interferences with the other components in the cabinet.

Grounding

Disturbance occurring in the grounding circuit affects the other circuits through the grounding mains or the casing of the connected motor.

Disturbance may interfere with the following appliances which are installed on the machines and which are sensitive to radiated interference, as they are measurement circuits operating at low voltage (μV) or current signal levels (μA):

- transducers (tachos, encoders, resolvers);
- thermoregulators (thermocouples);
- weighing systems (loading cells);
- PLC or NC inputs/outputs;
- photocells or magnetic proximity switches.

SINUS PENTA

Disturbance is mainly due to high-frequency currents flowing in the grounding mains and the machine metal components; disturbance occurs in the sensitive sections of components (optical transducer, magnetic transducer, capacitive transducer). Disturbance may also occur in appliances installed on machines with the same grounding or metal and mechanical interconnections.

A possible solution is to enhance the inverter, motor and cabinet grounding, as high-frequency currents flowing in the grounding between the inverter and the motor (capacity distributed to the ground of the motor cable and casing) may cause a strong difference of potential in the system.

7.1.1.1. The Power Supply Mains

Disturbance and radiated interference occur in the mains.

Limiting disturbance results in weakening radiated interference.

Disturbance on the mains may interfere with devices installed on the machine or devices installed even some hundred meters far from the machine and which are connected to the same mains.

The following appliances are particularly sensitive to disturbance:

- computers;
- radio receivers and TV receivers;
- biomedical equipment;
- weighing systems;
- machines using thermoregulation;
- telephone systems.

Mains disturbance may be limited by installing a mains filter to reduce RFI.

ELETTRONICA SANTERNO adopted this solution to suppress RFI.

7.1.1.2. Output Toroid Filters

Ferrite is a simple radiofrequency filter. Ferrite cores are high-permeable ferromagnetic materials used to weaken cable disturbance:

- in case of three-phase conductors, all phases must go through the ferrite;
- in case of single-phase conductors (or 2-wire line) both phases must go through the ferrite (incoming and outcoming conductor cables that are to be filtered must go through the ferrite).

7.1.1.3. The Cabinet

To prevent input and output of electromagnetic emissions to and from the cabinet, draw particular attention to the cabinet doors, opening and cable paths.

- A) Use a seam-welded metal frame ensuring electrical continuity.
- B) Provide an unpainted, reference grounding support on the frame bottom. This steel sheet or metal grill is to be connected to the metal frame, which is also connected to the ground mains of the equipment. All components must be bolted directly to the grounding support.
- C) Hinged parts or mobile parts (i.e. doors) must be made of metal and capable of restoring electrical conductivity once closed.
- D) Segregate cables based on the type and intensity of electrical quantities and the type of devices which they are connected to (components that may generate electromagnetic disturbance and components that are particularly sensitive to disturbance):

High sensitivity Analog inputs and outputs:

voltage reference and current reference

sensors and measurement circuits (ATs and VTs)

DC supply (10V, 24V)

Low sensitivity digital inputs and outputs: opto-isolated commands, relay outputs

Low perturbation filtered AC supply

High perturbation Power circuits in general

inverter non-filtered AC supply

contactors

inverter-motor wires

Measures to take when wiring the cabinet or the system:

- Sensitive signals and perturbator signals must never exist within a cable.
- Avoid that cables carrying sensitive signals and perturbator signals run parallel at short distance: whenever possible, paths of cables carrying sensitive signals and perturbator signals should be reduced to a minimum.
- Move away as much as possible any cables carrying sensitive signals and perturbator signals. The distance between segregated cables should be proportional to the cable length. Whenever possible, cable crossing should be perpendicular.

Wires connecting the motor or load mainly generate disturbance. Disturbance is important in inverter power drive systems or the devices installed on the machine, and could interfere with any equipment installed on the machine or with local communication circuits located near the inverter (radiotelephones, mobile phones). Follow the instructions below to solve these problems:

- Provide for a motor cable path as short as possible.
- Shield the power cables to the motor; ground shielding both to the inverter and to the motor. Excellent results are obtained using cables in which the protection connection (yellow-green cable) is external to the shielding (this type of cables are available on the market with a cross-section up to 35mm² per phase); if no shielded cable having a suitable cross-section is available, segregate power cables in grounded, metal raceways.
- Shield signal cables and ground shielding on the inverter side.
- Segregate power cable from signal cables.
- Leave a clearance of at least 0.5m between signal cables and Motor cables.
- Series-connect a common mode inductor (toroid) (approx. 100 µH) to the inverter-Motor connection. Limiting the disturbance in the motor cables will also limit mains disturbance.

Shielded cables allow both signal sensitive cables and perturbator cables to run in the same raceway. When using shielded cables, 360° shielded is obtained with collars directly bolted to the ground support.

The figure below illustrates the correct wiring of an enclosure containing an inverter; example of the correct wiring of an inverter installed inside an enclosure.

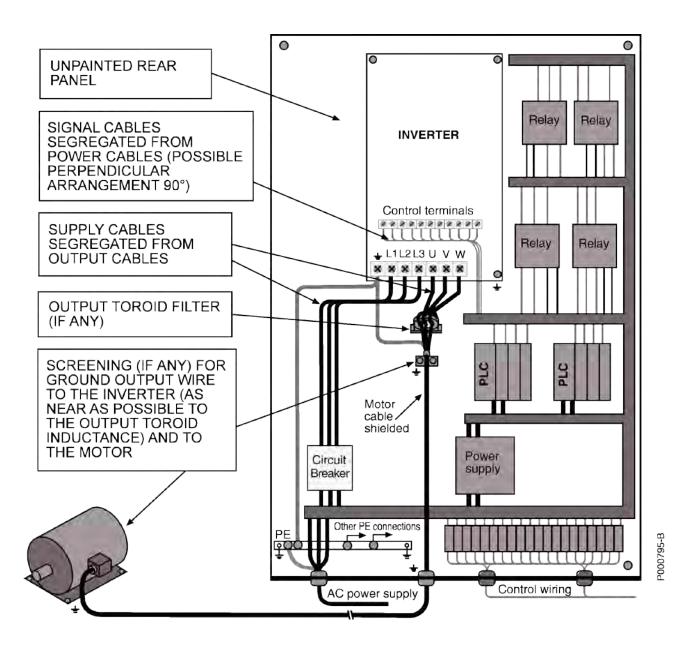


Figure 255: Example of correct wiring of an inverter inside a cabinet

7.1.1.4. Input and Output Filters

The inverters of the Sinus Penta series may be delivered with incorporated input filters; in that case, models are marked with A1, A2, B in the ID number.

If built-in filters are fitted, disturbance amplitude ranges between allowable emission limits.

As for devices of group 1, class B for standard EN55011 and VDE0875G, just install an additional output toroid filter (e.g. type 2xK618) on the models with incorporated filter A1; make sure that the three cables between the motor and the inverter go through the core. The figure shows the wiring diagram for the line, the inverter and the motor.

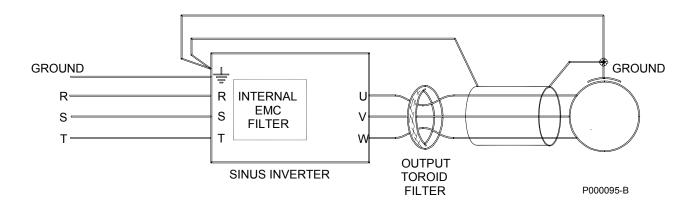


Figure 256: Wiring the toroid filter for the inverters of the Sinus Penta series

NOTE

Install the output filter near the inverter to comply with the standards in force (leave a minimum clearance for the cable connections).

NOTE

Install the toroid filter by leading the connection cables between the motor and the inverter inside the toroid.

7.2. Low Voltage Directive

The Low Voltage Directive requirements are met by the Sinus Penta drives as they comply with harmonized technical standard EN 61800-5-1, Variable Frequency Drives. Part 5-1: Safety Requirements - Electrical, Thermal and Energy.

The Sinus Penta drives may be integrated into a machine as they also meet the applicable requirements of technical standard EN 60204-1, Safety of machinery - Electrical equipment of machines - General requirements. Part 1: General rules.

SINUS PENTA

8. INDEX

		F\$851	341; 354
Α			
Air cooling	31		407
Alarms			375
Application	,	ES913	110; 297
Heavy	154		
Light	154	ES919	332
Standard		ES950	418
Strong	154	ES966	431
Auxiliary power supply	149	ES988	379
В		F	
BACNet/Ethernet	336	Feedback	
BACNet/RS485		Encoder	299
BiSS		Speed	286; 297
Board		Filters	,
DataLogger	341	Toroid	450
Encoder		FOC	17; 18
Fieldbus	307	_	,
I/O Expansion	356	G	
I/O Expansion 120/240Vrms		Ground connection	20; 106
Line Driver Encoder			,
Power Supply Unit		Н	
Relay I/O Expansion		Handling	28
Box		_	431
BU1440		•	297
BU200	212		
BU600	226	1	
BU700	226	I/O Expansion	
		•	364
C		_	17; 18
Cabinet	51; 450	Input	,
Carrier frequency	151; 172	inductors	268
Cavi di potenza		Inputs	
Choosing the product		Analog	125; 130; 365; 366; 367; 371
Classe di tensione		-	127
5T e 6T	159	•	121; 124; 373
Clock	354	Frequency	123
_			
D		К	
Dissipated power	33; 38	Key selector switch	396; 397
Disturbance	449	Keypad	137
Download	138	Remoting	78; 137; 140; 264
E		L	
Encoder	123; 368; 378	LEDs	137
Configuration		Line Driver Encoder	
Configuration examples			301
Terminals		-	300
Wiring			396; 397
Environmental requirements			,
ES822		М	
ES836		Mains failure	448
ES847		Maintenance	35

Metasys® N2
N
Noise Level
0
Output 453 Frequency 151 Inductors 271 Outputs 136 Analog 136; 374 Frequency 132 Relay 134 Overload 153 Heavy 164 Light 156 Standard 160 Strong 168
P
Permanent Magnets Motors 23 Piercing templates 53; 55; 63; 66 Power Cables 95; 96; 100; 104; 197; 451 Connections 65 Terminals 21; 67; 111 Power Cables 198; 221; 234 Power Connections 67 PTC 108; 125; 129
R
REM
SAFETY 20: 150

Serial board	303
Serial communications	144; 148
Short-circuit Currents	181
SIN/COS Encoder	398
Sine filters	285
Size	33; 38
Slot A288	
Slot B 305; 308; 333	3; 342; 355
Slot C	357; 376
Spare	120
Standard mounting	. 53; 63; 66
Start	21; 121
Start up	150
SU465	
SYN	17; 18
Τ	
Terminals	
Control	107
Power	
Thermal protection	
Through-panel assembly	
Twelve-Pulse Connection	
U	
UL-Approved Fuses97	7: 102: 105
UL-Approved Surge Protective Devices	
Unpacking	
Upload	
•	130
V	
Voltage Class	
2T-4T160; 163	1; 164; 168
5T-6T 158; 162; 163	3; 166; 170
Voltage Classes	
5T and 6T	171
VTC	17; 18
W	
Wiring diagram	69· 71
0 ~.~0. ~	05, 71